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How Performance Monitoring Can Help Us Understand Complex Disorders 

Cognitive control is an umbrella term for the cognitive processes that allow for the 
intrinsic ability to change behavior easily, willingly, and adaptively according to self-defined 
goals, while being subjected to the ever-changing demands of the environment (Badre, 2011; 
Shackman et al., 2011). Cognitive control processes are for example, selective attention, task-
switching, working memory, response selection, response inhibition, and performance 
monitoring (Luna et al., 2015). Cognitive control processes are reactive and proactive, and 
contribute to maintaining goal-oriented actions, suppressing irrelevant or competing 
information, and evaluating current actions. In this thesis, I study one cognitive control 
component: performance monitoring. There are several running definitions of performance 
monitoring, for a detailed overview, see Ullsperger et al. (2014). Here, performance monitoring 
is considered the continuous supervision of one’s activities and the initiation of behavioral 
adaptations to ensure goal-directed behavior. There are two important and partly intertwined 
processes of performance monitoring: conflict and error monitoring, depicted in Figure 1. The 
two concepts are the central topics studied in this dissertation.  

Performance monitoring is essential for learning, behavior, and emotion regulation. 
Identifying how performance monitoring facilitates observable behavior will help us 
understand goal-directed behavior and learning. In individuals with psychopathology, deviant 
information processing is a mechanism thought to be underlying symptomatology and 
maladaptive behavior. Studying performance monitoring, along with other indicators of 
cognitive control, is, therefore, considered important in understanding how symptoms or 
maladaptive behavior typically observed in psychopathology develops, persists, or 
worsens. This is why the current dissertation demonstrates the role of performance 
monitoring in psychopathology. 
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Figure 1.  

Visual presentation of performance monitoring in cognitive control processes and a practical example 
of how they steer behavior. 

 

In this dissertation, I refer to psychopathology when considering mental disorders 
that are clinically assessed. Otherwise, I considered the subclinical level of symptoms as 
psychological problems. Understanding why individuals develop psychopathology is an 
increasingly important endeavor. This is because approximately one in every eight individuals 
in the world is affected by psychopathology (Institute of Health Metrics and Evaluation. Global 
Health Data Exchange; GHDx, 2022), causing severe problems for the individual, their direct 
surroundings and society. The traditional categorical classification systems, such as the DSM 
and ICD, do not aid in understanding and treating psychopathology (Kotov et al., 2017), 
because of symptom overlap (Forbes et al., 2023), outdated standards (in the case of 
depression: Fried, 2017), limited reliability of observed phenomena, and large heterogeneity of 
diagnosis within categories. This has led researchers and practitioners to shift from a 
categorical classification to a more dimensional approach to psychopathology (Conway et al., 
2019). The dimensional approach proposes common hierarchical clusters of comprehensive 
and corresponding disorders, where most disorders load onto an internalizing and 
externalizing spectrum (Hierarchical Taxonomy of Psychopathology, HiTOP; Krueger et al., 
2018). The problem behavior observed in internalizing disorders is characterized by emotional, 
harmful, fearful, depressive, and somatic symptoms typically directed toward the individuals 
themselves. Disorders like major depression, anxiety, and fear disorders are part of this 
dimension. Externalizing disorders (Krueger et al., 2007; Krueger et al., 2009) involve 
maladaptive, impulsive, and disruptive behavior directed outwards. Addiction, conduct, and 
attention deficit hyperactivity disorders are part of the externalizing spectrum. There is a 
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notion that the deviant behavior observed in patients with internalizing or externalizing 
disorders can be driven by variations in performance monitoring ability (amongst the other 
cognitive control processes, see RDoC: National Institute of Mental Health, NIMH, 2008; 
Cuthbert, 2014; HiTOP). Understanding when and how performance monitoring is a common 
transdiagnostic marker across these disorders will help researchers and clinicians improve the 
nosology of psychopathology. Also, it deepens our understanding of comorbidity (Krueger & 
Markon, 2006) and heterogeneity, which ultimately helps us to better support patients and 
develop targeted (pharmacological) treatment interventions. With the research presented in 
this dissertation, I contribute to our understanding of the role of performance monitoring in 
the etiology of psychopathology. 

Studying Performance Monitoring  

Performance monitoring is an automatic, elementary, and unconscious process, 
which makes it challenging to capture its components. Yet, we can study observable behavior 
and brain activity as a proxy of these cognitive processes. Cognitive scientists have designed 
speeded tasks that stimulate components of performance monitoring by simplifying and 
mimicking real-life actions that require performance monitoring. In these computerized tasks, 
the individual needs to pay close attention to the stimuli, process conflicting information, 
inhibit predominant responses and avoid errors. The performance monitoring tasks can be 
easily modified to allow for different experimental manipulations (e.g., create conditions that 
evoke certain emotions) or can be adjusted to accommodate sample characteristics (e.g., age). 
Examples of these performance monitoring tasks are the flanker task (Eriksen, & Eriksen, 
1974), go-nogo task (e.g. Falkenstein et al., 1999), Stroop task (based on the Stroop color-word 
test; Jensen, & Rohwer, 1966), stop-signal task (Logan et al., 1984; Verbruggen & Logan, 2008), 
error awareness task (e.g., Orr & Hester, 2012) and the (AX-)continuous performance task 
(CPT; Conners, 1985; Gonthier et al., 2016; Rosvold et al., 1956). These performance monitoring 
tasks can be used to gain insight into information processing by measuring behavioral 
indicators and/or by measuring brain activity. First, the actual task behavior can be observed, 
e.g., the number of mistakes one makes or the slowing of response after a mistake is made. 
Second, performance monitoring is examined on a neurophysiological level with instruments 
like electroencephalogram (EEG, for the study of event-related potentials, ERP’s) and 
functional magnetic resonance imaging (fMRI; identifying the activity of brain regions). This 
dissertation combines different methodologies to investigate performance monitoring on both 
behavioral and neurophysiological levels to increase our understanding of its role in 
psychopathology. 

Behavioral Indices of Performance Monitoring  

The performance task that is predominantly applied in this dissertation is the flanker 
task. The flanker task aims to stimulate two components of performance monitoring: conflict 
monitoring or adaptation and error monitoring or processing (explained in the next 
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paragraphs). In this task, shown in Figure 2, participants are instructed to look at a string of 
symbols (such as arrows or letters) that point in a certain direction (in the case of arrows) or 
that are identical (in the case of symbols). In a typical arrow flanker task, there are two trial 
types: 1) all the symbols point in the same direction (compatible or congruent) or 2) the middle 
symbol points in another direction than the surrounding symbols (incompatible or 
incongruent, thus conflicting information). The participant is instructed to look at the middle 
symbol and press a button from the corresponding side (e.g., when an arrow is pointing to the 
left, the participant presses the left button). These symbols are presented at a fast rate to 
trigger error-making. In this way, the processing of conflicting information (incongruent trials) 
and errors can be studied. 

Figure 2.  

A presentation of how the flanker task allows for the measurement of performance monitoring.  

 

Behavioral indices of performance monitoring are response time (the time it takes the 
participant to press a button), accuracy (correct or incorrect), and calculations derived from 
these variables. For instance, to study conflict monitoring, we need to know the correct or 
incorrect responses on congruent and incongruent trials. Incongruent trials contain 
interfering or conflicting information and trigger what is called the congruency effect. The 
congruency effect requires more cognitive control, evidenced by an increased chance of error-
making and longer response times. There are several theories that explain performance 
monitoring on a behavioral level (see Ullsperger et al., 2014), such as the reinforcement learning 
theory (Holryod & Coles, 2002), adaptive orienting theory of error processing (Wessel, 2018), and 
the conflict monitoring theory (Botvinick et al., 2001). Most relevant in the current dissertation is 
the conflict monitoring theory (Botvinick et al., 2001), which states that the congruency effect 
stimulated in these tasks involves 1) the effective detection of conflicting information and 2) 
behavioral adaptation after response to the conflict. When planning to carry out a particular 
action, the conflict monitoring system focuses on the identification of current behavior and 
encourages attention processes to adjust consecutive behavior to execute the ‘correct’ action.  
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Another frequently used behavioral index of error processing is post-error slowing (PES; 
Danielmeier & Ullsperger, 2011; Rabbitt, 1966). This observable phenomenon, which occurs 
after an individual makes an error, is the slowing of response time reflecting the processing of 
an error behavioral adjustment. Another measure that can be derived from the behavioral 
indices of task performance is the speed-accuracy trade-off. Speed-accuracy trade-off (SAT) 
describes the ‘strategy’ of the participant: it is the inverse relationship between the speed of the 
response and the response accuracy (Heitz, 2014). When an individual focuses on avoiding 
mistakes, the response time increases. When an individual favors speed, the response time 
decreases at the expense of more error-making.  

Although the investigation of behavioral indices of performance monitoring tasks is 
usually a secondary aim in neurocognitive studies, task behavior indices are reported to 
investigate patterns of performance monitoring in individuals with psychopathology. For 
instance, the aggregation of behavioral indices in flanker and go-nogo tasks show deficits in 
performance monitoring in patients with juvenile and adult ADHD in the study of Geburek et 
al. (2013). Differences in PES between healthy controls and patients with an externalizing 
disorder have been reported for ADHD (Balogh & Czobor, 2016) and substance use disorder 
(SUD: Sullivan et al., 2019). In both meta-analyses with ADHD and SUD samples, the patient 
groups had reduced accuracy, slower response times, and diminished PES when compared to 
controls. In samples with internalizing disorders, behavioral indices of performance 
monitoring are less studied, and existing studies show mixed results. In two studies (Rueppel et 
al., 2022; Van der Borght et al., 2016), task behavior and PES appeared to be affected in patients 
with anxiety disorders or individuals with trait anxiety. More specifically, patients with anxiety 
or individuals with high anxiety symptoms had lower accuracy, slower RTs, and larger PES 
compared to controls or individuals with low anxiety. Yet others do not report task 
performance differences between individuals with and without high anxiety traits (Aarts & 
Pourtois, 2010; Cavanagh et al., 2017; Hseih et al., 2021). Last, speed-accuracy trade-off has not 
been widely studied in relation to psychopathology. Initial studies on this behavioral indicator 
of performance monitoring show that healthy young adolescents value speed as much as 
accuracy (Ladouceur et al, 2007) yet children with ADHD prefer speed over accuracy (Mulder et 
al., 2010), reflecting the impulsivity trait of the disorder. 

To better understand how behavioral indices of performance monitoring play a role in 
the development of psychopathology, we can explore the development of performance 
monitoring in children. To date, very few studies exist on this development on a behavioral 
level and, in particular, its role in psychopathology. The studies of Davies et al. (2004) and 
Gavin et al. (2019) are two cross-sectional investigations covering a large time span in 
childhood and adolescence. The two studies indicate that children’s performance monitoring 
enhances on a behavioral level: both errors and response times decrease. In addition, several 
studies indicate that emerging internalizing and externalizing problems in children are related 
to behavioral indices of performance monitoring (e.g., Meyer et al., 2012; Woltering et al., 
2011). Yet a combination of the examination of performance monitoring development and its 
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link to the development of psychological problems in childhood is lacking. Chapter 4 describes 
an exploration of the trajectory of flanker performance in a sample of children of mainstream 
elementary school children and how this trajectory links with psychological problem 
development.  

The behavioral responses evoked by performance monitoring tasks are driven by 
processes in the brain. Here, the neurophysiological correlates of error processing that are 
relevant to the current dissertation are discussed below. Other relevant physiological measures 
like heart rate and skin conductance or other performance- and attention-related measures 
(stimulus-locked N200, N450 and P300, neural oscillations, correct-related negativity, feedback-
related negativity, etc.) are outside of the scope of this dissertation.  

Event-Related Potentials of Performance Monitoring  

A well-known method that detects the electrical activity of the brain through a cap of 
electrodes is the electroencephalogram (EEG, figure 3). EEG is a non-invasive instrument 
known for its high temporal resolution and the study of event-related potentials (ERP’s) in 
psychology. ERPs are derivatives or averages of the brain waves that are elicited through 
stimuli or responses (time-locked ERP's) during the tasks. There are several performance 
monitoring, or more specifically, error processing ERP's relevant for the two review articles in 
the current dissertation (Chapter 2 and 3): the response-locked error-related negativity (ERN) 
and error positivity (Pe), shown in Figure 3.  

Figure 3.  

An illustration of error-related brain activity measured by EEG. A). EEG cap with electrodes; B). An 
averaged ERN and Pe waveform at the frontocentral (FCz) for error and correct trials. 

 

Error-related Negativity. Brain activity in response to an error can be observed via 
EEG. A sharp negative deflection (shown in Figure 3), appearing about 50 to 100 ms after the 
error (Coles et al., 2001; Falkenstein et al., 2000), is called error-related negativity (ERN; 
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Gehring et al., 1993; 2018) or Error Negativity (Ne; Fankenstein et al., 1991). The ERN is usually 
the largest (more negative) in the frontal and central electrodes and originates from the 
anterior cingulate cortex (ACC) in the brain (Dehaene et al., 1994; Ridderinkhof et al., 2004; 
Van Veen & Carter, 2002b). The ERN indicates the initial and trait-like reaction of the brain 
toward the error and marks the commencement of error processing in the brain (Holroyd & 
Coles, 2002; Olvet & Hajcak, 2009). The ERN appears irrespective of the participant being 
conscious of the error (Hester et al., 2005; Nieuwenhuis et al., 2001) and has proven to be a 
stable, robust, and valid measure of error processing (Larson et al., 2010; Riesel et al., 2013; 
Rietdijk et al., 2014). There are several running theories and models (see Lo, 2018; Olvet & 
Hajcak, 2008) that describe the functional significance of the ERN, such as reinforcement 
learning (Holroyd & Coles, 2002), mismatch theory (Bernstein et al. 1995; Falkenstein et al., 1991) 
and motivational significance theory (Olvet & Hajcak, 2008), conflict monitoring theory (Botvinick 
et al., 2001; Larson et al., 2014), and threat sensitivity (Weinberg et al., 2016). Finally, there is 
evidence that conflict and error processing closely relate to other mechanisms, such as 
personality, affective functions or other traits like anxiety (Hajack, 2012; Segalowitz & Dywan, 
2009). For example, Dignath et al. (2020) suggest that conflict and errors trigger a negative 
reaction, which drives the ‘control adaptation’ (increased attention to change behavioral 
performance). The different theories on the ERN collectively explain how the ERN is generated 
by a network of brain regions and clarify how error processing relates to the dopamine system, 
and the motivational, threatening, and affective aspects that ultimately drive learning and 
behavioral adjustment.  

Error positivity. There is another yet independent error-related ERP: the error 
positivity, abbreviated as Pe (Figure 3). Pe is a larger, slower positive wave that appears 200 to 
600 ms after the error, largest in the central-parietal electrodes (Arbel & Dochin, 2009; 
Falkenstein et al, 1991). The Pe relies on a network containing the ACC, anterior insular, and 
medial frontal cortex in the brain (Overbeek et al., 2005; Ullsperger, et al., 2010; Van Veen & 
Carter, 2002a; Vocat et al., 2008). The Pe can be interpreted as the conscious awareness of the 
error (Ficarella et al., 2019; Nieuwenhuis et al., 2001, Ullsperger et al., 2010) and the processing 
thereof (Overbeek et al., 2005). Currently, there is no consensus on the running hypotheses of 
the functional significance of Pe (proposed by Falkenstein, 2004; discussed by Overbeek et al., 
2005). Namely, the Pe could indicate the emotional appraisal of the error and its consequences 
according to the affective processing hypothesis; the Pe could be reflective of the change in 
behavior after error-making according to the behavior-adaption hypothesis; and according to the 
error awareness hypothesis, the Pe could mark the conscious recognition of the error.  

The ERN has previously been studied as a candidate transdiagnostic marker for 
several psychopathologies (Riesel et al., 2019), specifically in internalizing disorders like 
anxiety (e.g., Riesel, 2019) and obsessive-compulsive disorders (Gilian et al., 2017). Patients 
with internalizing disorders show an enhanced reaction to error-making, evidenced by a 
greater ERN, compared to healthy controls. For externalizing disorders, there were 
inconsistent findings. There is a growing interest in the role of Pe in psychopathology 
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(Donoghue & Voytek, 2021) as evidenced by an increase in reviews on error positivity, such as 
the study by Boen et al. (2021), even though Pe is usually not reported as a main error-related 
ERP. There are several reasons for this, such as a) the Pe has similarities with another ERP: the 
P300 (see for discussion Overbeek et al., 2005), b) it remains unclear what the Pe really means. 
There is no consensus yet on whether and to what extent internalizing disorders are related to 
Pe. In externalizing disorders, there is an indication that it is reduced, for example, in ADHD 
(Kaiser et al., 2020). By compiling studies on error-related ERP’s in individuals with 
externalizing problems, I contribute to the literature on the role of error processing in 
externalizing disorders (Chapter 2). In both Chapter 2 and 3, I evaluate the bias in reporting, 
address the inconsistent findings, and provide future directions for research. In Chapter 2, I 
conducted  meta-analyses on ERN and Pe studies with samples of patients with externalizing 
disorders. In Chapter 3, I performed a narrative review to evaluate whether the error-related 
ERP's can serve as biomarkers for externalizing psychopathology.  

Brain Regions Involved in Performance Monitoring 

Magnetic Resonance Imaging (MRI) is an imaging technique that makes scans of the 
anatomy, tissue type, and physiological processes of the body. MRI relies on strong magnetic 
fields and radio waves which allows for high special resolution imagery. Functional MRI 
(fMRI) detects the blood-oxygen-level-dependent (BLOD) signal, which is the oxygenated blood 
and blood flow and reflects the neural activity. fMRI has been useful in the identification of 
activation patterns of brain regions where information, such as performance monitoring, is 
being processed.  

Figure 5 shows the brain with the anterior cingulate cortex as the main center for 
performance monitoring (Holroyd & Yeung, 2012; Kerns et al., 2004; Shenhav et al., 2013; van 
Veen & Carter, 2002b). Several studies found specific regions of the ACC to be involved during 
error processing, such as the dorsal region (Gilbertson et al., 2021), anterior mid-cingulate 
cortex (Wessel et al., 2012), ventral and rostral part of the ACC, and the posterior medial 
prefrontal cortex (Dehaene et al., 1994). Several other brain regions appear to be involved 
during performance monitoring, such as the supplementary motor area (Taylor et al., 2007), 
dorsal lateral prefrontal and superior frontal cortex (Pourtois et al., 2010; Ridderinkhof et al., 
2004; particularly for behavioral adjustment in Kerns et al., 2004), the ventrolateral prefrontal 
cortex, the insula, and the inferior parietal lobule (Ham et al., 2013; Klein et al., 2013; Taylor et 
al., 2007). Initial connectivity analyses (type of analysis to test the network of brain regions 
working together) reveal that change in ERN amplitude (incorrect vs correct) is related to the 
connectivity between the dorsal ACC and supplementary motor area (Gilbertson et al., 2021). 
For an elaborate discussion of the performance network, see Ullsperger et al. (2014). Abnormal 
functioning of the ACC region is indicative of disorders such as addiction (Luijten et al., 2014; 
McTeague et al., 2017), ADHD, depression and obsessive-compulsive disorder (Holroyd & 
Umemoto, 2016).  
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Figure 5.  

Brain regions involved in performance monitoring. A. Brain in the skull; B. lateral view of the brain; 
C. Sagittal view of the brain. Abbreviations are vlPFC: ventrolateral prefrontal cortex, dlPFC: 
dorsolateral prefrontal cortex, SMA: supplementary motor area, IPL: inferior parietal lobule, vmPFC: 
ventromedial prefrontal cortex, dmPFC: dorsomedial prefrontal cortex, rACC: rostral anterior 
cingulate cortex, pgACC: pregenual anterior cingulate cortex, dACC: dorsal anterior cingulate cortex, 
pCC: posterior cingulate cortex. 

  

 

Performance Monitoring Across the Lifespan 

To understand when performance monitoring could play a role in the development of 
disorders, it is crucial to investigate it across different age samples and explore potential 
changes in performance monitoring over time. Performance monitoring can be detected as 
early as 4 years old (Brooker et al., 2011; Morales et al., 2021). During childhood and 
adolescence, the ERN develops substantially (Boen et al., 2021; Lo et al., 2018). As children age, 
the ERN becomes larger (more negative), but the Pe appears to be stable across childhood 
(Boen et al., 2021). The development of the error-related ERPs is driven by neural changes 
(e.g., synaptic pruning and neuroplasticity) in brain regions such as the medial frontal cortex, 
the dorsal (caudal) ACC and posterior cingulate cortex (Tamnes et al., 2013), and the 
maturation of the network of performance monitoring. There is some evidence that the 
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changes in functional maturation during childhood facilitate the improvement in performance 
monitoring (see for more details Tamnes et al., 2013).   

In healthy adult samples, the ERN appears to be stable, evidenced by the lack of 
correlation between the ERN and age (e.g., Fischer et al., 2016; Imburgio et al., 2020; Larson et 
al., 2016; Niessen et al., 2017). Age-related changes in Pe are studied to a lesser extent. Initial 
studies are inconsistent and show that the Pe magnitude might be consistent over time (Larson 
et al., 2016) or related to age (when age increased, Pe decreased: Imburgio et al., 2020). The 
adult age-related changes in the ERN and Pe are also driven by neural changes in the brain, for 
instance, dopamine levels (Segalowitz & Dywan, 2009).  

In addition to age-related changes in error-related brain activity, we can examine 
whether these neurophysiological markers can be seen as predictors of psychopathology 
across development (Loo et al., 2016). This can be investigated by comparing the ERN in 
healthy children with the ERN in children at risk for a disorder. For instance, the ERN is 
decreased in children who are at risk for depression (Meyer et al., 2018) and addiction 
(Cádenas et al., 2023; Euser et al., 2013), whereas the ERN is increased in children at risk for 
anxiety disorders (Meyer, 2017) or OCD (Riesel et al., 2019). This has made the ERN a promising 
transdiagnostic endophenotype, at least for internalizing disorders, yet it remains unclear 
whether this is also the case for externalizing disorders. This is why I address, in Chapter 3, 
whether error processing correlates can be considered a biomarker in externalizing 
psychopathology.  

Key Variables for the Performance Monitoring and Psychopathology Link.  

There are several variables that are related to performance monitoring. Performance 
monitoring, together with variables like defense reactivity (Weinberg et al., 2012) and other 
measures of cognitive control (working memory: Meyer & Hajcak, 2019), may predict 
psychopathology. Furthermore, there are relevant moderators like gender (e.g., Hill et al., 
2018) or personality (e.g. conscientiousness; Pailing & Segalowitz, 2004), that can modulate the 
role of performance monitoring in psychopathology (in particular, the ERN). The 
temperamental trait behavioral inhibition (BI, not to be confused with the cognitive measure, 
for which the same term can be used) reflects shy and withdrawn behavior in unfamiliar 
situations and is a strong predictor of the development of anxiety problems and disorders 
(Sandstorm et al., 2020). Since performance monitoring is also affected by anxiety problems, it 
is possible that infant BI affects social anxiety and performance monitoring later in life. 
Therefore, Chapter 5 will address the influence of infant BI on social anxiety and error 
processing by the brain later in adulthood.  

Another manner of testing the effect of variables on performance monitoring is by 
adjusting the cognitive task through manipulations of the addition of stimuli. Task adaptations 
can trigger different task performances and neurophysiological responses, but they also 
provide insight into possible mechanisms between the two. For instance, the presence of 
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feedback on performance may influence task behavior (Grützmann et al., 2014). In the meta-
analysis in Chapter 2, I test several moderators that can systematically influence error 
processing in externalizing samples that have applied EEG. In Chapter 5, a social flanker is 
adopted to test the effect of a social context on performance monitoring. By stimulating a 
social context, it is possible to investigate the ‘pressure’ to perform well by inducing peer 
observation. Social manipulation mimics real-life social situations in which an individual 
should avoid making mistakes to evade social evaluation. For individuals with social anxiety, 
the fear of social evaluation is one of the fundamental underpinnings of the disorder. The 
social flanker task has only been adopted in a handful of studies, yet never in an adult sample 
during MRI. That is why in Chapter 5, I investigate the social error processing by the brain in 
adults. 

Current Dissertation  

The role of performance monitoring in the development of psychopathology has been 
studied extensively. The research in the current dissertation builds upon this line of research, 
using different sets of existing data and different methods (such as experimental and meta-
analyses) and instruments (EEG and MRI). First of all, the growing amount of research on the 
role of error processing in externalizing psychopathology encourages the need to summarize 
the literature. Also, it allows the study of the extent to which we can consider error-related 
ERPs as biomarkers for the externalizing spectrum. This question was central to this 
dissertation: What is the role of error processing in externalizing psychopathology? In 
Chapter 2, we compiled EEG experiments that investigated two error-related ERP’s, ERN and 
Pe in externalizing samples. The objective of this study was to systematically investigate 
whether the ERN and Pe were different in patients with externalizing disorders or individuals 
with externalizing problem behavior versus healthy controls. We tested several sample and 
task-related variables to explain heterogeneity in the data and to inform future experimental 
designs. We expected that the ERN and Pe were diminished, reflecting the reduced ability to 
monitor and respond to errors specifically for individuals with externalizing psychopathology. 
In Chapter 3, we reflected on the current state of literature to answer a central question: Can 
error-related ERPs be considered biomarkers in externalizing psychopathology? In this review, 
we integrated research to evaluate whether ERN and Pe can serve as potential biomarkers for 
externalizing disorders. In Chapters 4 and 5, two longitudinal samples were used: the “Happy 
Child, Happy Adolescents?” study and a prospective longitudinal study on the influence of 
infant temperament on socioemotional development (sample recruited in Washington D.C., 
United States). Abundant performance monitoring research has relied on cross-sectional and 
experimental paradigms. Longitudinal study designs allow for the examination of emerging 
psychopathology and the long-term effects of important predictors of behavior. The following 
two research questions are answered in the remainder of this dissertation: What is the 
development of flanker performance in children, and how is it related to behavioral and 
emotional problems? In Chapter 4, we study a sample of mainstream elementary school 
children that have performed the same flanker task across 5 years. We explore the 
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developmental trajectory of flanker performance and its association with the development of 
teacher-reported behavioral and emotional problems. The study described in Chapter 5 aims 
to answer the third research question: Is there an association between infant temperament, 
current social anxiety and social performance monitoring during adulthood? In this 
longitudinal prospective study, we investigate the effect of infant behavior inhibition on 
current social anxiety problems and the performance of a social flanker task performed in the 
MRI 30 years later. Finally, Chapter 6 summarizes and discusses the main findings of this 
dissertation, as well as the implications for future research and clinical practice. 
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Chapter 2 

 

 

Diminished Error-Related Negativity and Error Positivity in Children and Adults 
with Externalizing Problems and Disorders: A Meta-Analysis on Error Processing 

 

 

This chapter has been published as:  

Lutz, M. C., Kok, R., Verveer, I., Malbec, M., Koot, S., van Lier, P. A. C., & Franken, I. H A. 
(2021). Diminished error-related negativity and error positivity in children and adults with 
externalizing problems and disorders: a meta-analysis on error processing. Journal of 
Psychiatry and Neuroscience, 46(6), E615-E627. https://doi.org/10.1503/jpn.200031 
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Abstract 

Background: Deficits in error processing are reflected in an inability of people with 
externalizing problems to adjust their problem behaviour. The present study contains 2 meta-
analyses, testing whether error processing — indexed by the event-related potentials error-
related negativity (ERN) and error positivity (Pe) — is reduced in children and adults with 
externalizing problems and disorders compared to healthy controls. Methods: We conducted a 
systematic search in PubMed (1980 to December 2018), PsycInfo (1980 to December 2018) and 
Scopus (1970 to December 2018), identifying 328 studies. We included studies that measured 
error processing using the Eriksen flanker task, the go/no-go task or the stop-signal task in 
healthy controls and in adults or children with clearly described externalizing behavioural 
problems (e.g., aggression) or a clinical diagnosis on the externalizing spectrum (e.g., 
addiction). Results: Random-effect models (ERN: 23 studies, 1739 participants; Pe: 27 studies, 
1456 participants) revealed a reduced ERN amplitude (Hedges’ g = 0.44, 95% confidence 
interval [CI] 0.29 to 0.58) and a reduced Pe amplitude (Hedges’ g = −0.27, 95% CI −0.44 to −0.09) 
during error processing in people with externalizing problems or disorders compared to 
healthy controls. Type of diagnosis, age and the presence of performance feedback or 
comorbidity did not moderate the results. The employed cognitive task was a moderator for Pe 
but not for ERN. The go/no-go task generated a greater amplitude difference in Pe than the 
Eriksen flanker task. Small-sample assessment revealed evidence of publication bias for both 
event-related potentials. However, a p curve analysis for ERN showed that evidential value was 
present; for Pe, the p curve analysis was inconclusive. Limitations: The moderators did not 
explain the potential heterogeneity in most of the analysis, suggesting that other disorder- and 
patient-related factors affect error processing. Conclusion: Our findings indicate the presence 
of compromised error processing in externalizing psychopathology, suggesting diminished 
activation of the pre-frontal cortex during performance monitoring. 
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Diminished Error-Related Negativity and Error Positivity in Children and Adults with 
Externalizing Problems and Disorders: A Meta-Analysis on Error Processing 

Externalizing problem behaviour has been associated with problems in cognitive 
control (Morgan & Lilienfeld, 2000), of which error processing is an important component 
(Luna et al., 2015; Ridderinkhof et al., 2004). People with externalizing problems or disorders 
are characterized by disruptive and problematic behaviour that is directed outward to the 
environment and are further referred to as externalizing samples. Specific diagnoses and 
behaviours that belong to the category of externalizing samples include attention-
deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, psychopathy, conduct 
disorder, aggression, antisocial personality disorder, substance use disorder (SUD) and 
delinquency (Kruger & South, 2009). Error-processing, which refers to the ability to detect 
errors and evaluate performance, allows for the adaptation of behaviour to correctly react to 
stimuli from the environment (Holroyd & Coles, 2002). Deficits in error processing can be 
reflected in a failure to adjust behaviour, which is indicative of externalizing psychopathology. 
Deficits in error processing can be detected by electroencephalography (EEG) and are reflected 
in a diminished amplitude of the event-related potentials (ERP) error-related negativity (ERN) 
and error positivity (Pe). Several studies have investigated differences in the ERN (e.g., Lo 2018, 
in children and adolescents with externalizing problem behaviour) and Pe (e.g., Luijten et al., 
2014 in substance use disorder), but a systematic review is lacking in children and adults that 
combines externalizing samples and includes comparison with healthy controls. This study 
investigates the ERN and Pe across different externalizing samples to determine error 
processing deficits in children and adults with externalizing problems or disorders compared 
to healthy controls. 

Error-Related Negativity 

The ERN (Gehring et al., 1993; 2018) or negativity error (Ne, Falkenstein et al., 1991) is 
a negative deflection that occurs approximately 50 ms to 100 ms after commission of an error 
(Coles et al., 2001; Falkenstein et al., 2000). This ERP waveform peaks at the frontocentral 
electrodes, reflecting the neuronal activity of the anterior cingulate cortex (Dehaene et al., 
2010) during error processing (Ridderinkhof et al., 2004; Holroyd & Coles, 2002; Van Veen & 
Carter, 2002a). The ERN is a robust and reliable (Riesel et al., 2013; Rietdijk et al., 2014) 
neurobiological marker that reflects the brain’s initial reaction to an error and the start of error 
processing, whether or not the person is conscious of the error Hester et al, 2005; Nieuwenhuis 
et al., 2001). Several theories outline the functional significance of the ERN (for an overview, 
see Loo et al., 2016; Olvet & Hajcak, 2008), including mismatch theory, motivational 
significance theory, reinforcement and learning-based theory, and conflict monitoring theory. 
These theories describe different processes of error and conflict detection, as well as the role 
of the dopaminergic system of the brain and the anterior cingulate cortex. Previous work has 
suggested that the ERN can serve as a candidate endophenotype for psychopathology, 
especially for internalizing disorders. Meta-analyses of internalizing samples show that the 



 

19 
 

ERN appears to be increased in patients with anxiety (Moser et al.,2016), obsessive-compulsive 
disorder (Riesel, 2019) and depression disorders (Moran et al., 2017) compared to healthy 
controls. A recent meta-analysis concluded that the ERN can serve as a transdiagnostic marker 
for internal and externalizing disorders (Pasion & Barbosa, 2019). The current study is an 
extension of this meta-analysis, including child samples as well as adult samples, and also 
including psychopathy samples. In addition, we have used effect size calculation rather than 
effect size estimation, and included the late error processing component Pe as well as the ERN.  

Deviating activation patterns in the brain with respect to cognitive control have been 
found in externalizing behaviour (Olvet & Hajcak, 2008; Rudo-Hutt, 2015). Some studies have 
reported decreased ERN amplitude in ADHD (e.g., Wiersema et al., 2009) and addiction (e.g., 
Zhou et al., 2013), but other reports have found no differences in the ERN compared to healthy 
controls (e.g., in addiction: Franken et al., 2017; ADHD: Van de Voorde et al., 2010). Some 
studies have even reported increased ERN amplitude in ADHD (Wiersema et al., 2005) and 
addiction (Schellekens et al., 2010) compared to controls. The presence of comorbid 
internalizing problems has been suggested as a possible explanation for these mixed results, as 
illustrated by the study of Schellekens et al. (2010) in a sample of patients with alcohol 
dependence. Although medication (e.g., Groom et al., 2013), age (Lo, 2018) and the 
experimental paradigm (Riesel et al., 2013) have been studied as moderating factors for ERN 
amplitude, it remains unclear whether these variables influence ERN results across 
externalizing samples. Furthermore, several studies have reported that performance feedback 
during tasks can influence error processing (Grützmann et a., 2014; Hajcak et al., 2005; Riesel 
et al., 2012). When participants receive feedback on performance, they become cautious of 
their response accuracy, inducing greater reactions to errors. By conducting a meta-analysis, 
we were able to integrate inconsistent findings to shed light on the role of the ERN in 
externalizing behaviours. Moreover, by explicitly testing medication use, age, comorbidity, 
experimental paradigm and performance feedback as moderators, we were able to investigate 
whether or how they account for variability in ERN studies. 

Error Positivity 

Another ERP component relevant for performance monitoring is Pe amplitude. The Pe 
is a slow, positive deflection, peaking at approximately 200 ms to 600 ms after an error; it is 
measured across the centroparietal area (Arbel & Donchin, 2009; Falkenstein et al., 2000; 
Overbeek et al., 2005) The Pe is said to reflect the conscious awareness of errors and error 
processing (Overbeek et al., 2005). It is an independent ERP component, despite the fact that it 
follows directly after the ERN and shows similarities with the P300 component (for example, 
the latency window). For further reading on the similarities and differences between these 
components, see Arbel and Donchin (2009), Davies et al. (2001), Overbeek et al. (2005) and 
Ridderinkhof et al. (2009). The functional significance of the Pe has been described in several 
hypotheses (Falkenstein et al, 2000; Overbeek et al., 2005) including the affective processing 
hypothesis (in which the Pe reflects the emotional appraisal of the error), the behaviour-
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adaptation hypothesis (in which the Pe indicates performance adjustment after error) and the 
error awareness hypothesis (in which the Pe reflects the conscious recognition of the error 
committed). Although empirical evidence is needed to support these hypotheses (specifically 
in terms of the neural generators of Pe), they suggest that diminished Pe could be related to 
deviant activity of the rostral part of the anterior cingulate cortex (Van Veen & Carter, 2002a; 
Hermann et al., 2004).  

Compared to controls, Pe reductions in error processing for people with externalizing 
problems or disorders have been observed more consistently than ERN reductions, although 
some discrepancies have been found across studies. For instance, some studies have found 
diminished Pe amplitudes in people with ADHD (e.g., Albrecht et al., 2008) and substance use 
(e.g., Franken et al., 2007), but these were not replicated in subsequent studies (e.g., addiction 
studies: Franken et al., 2017; Luijten et al., 2011). Moreover, other studies have found a reverse 
effect, indicating that increased Pe amplitudes are related to externalizing behaviour (e.g., in 
addiction: Rass et al., 2014 and ADHD: Wild-Wall et al., 2009). This is the first meta-analysis to 
summarize Pe findings in externalizing samples compared to healthy controls. We have 
examined the moderators suggested for the ERN, above, to try to better understand these 
discrepancies in study findings. 

In the current study, we aimed to investigate whether the ERN and Pe were different 
in children and adults with externalizing problems or disorders compared to healthy controls. 
We use meta-analysis and focused on the mean amplitude of the ERN at the midline 
frontocentral electrode (FCz; for subsequent analyses to investigate the effect of other midline 
electrode sites Fz and Cz, see supplementary materials section 5) and the Pe at the midline 
central electrode (Cz). We expected that both the ERN and Pe amplitudes would be reduced in 
the externalizing groups, indicating deficits in error processing. To explain the mixed results 
found in this field of research, we investigated potential heterogeneity by adding type of 
diagnosis, presence of comorbidity, experimental paradigm, age and medication use as 
moderators in both analyses. Except for comorbidity (comorbid internalizing or externalizing 
symptoms or a combination of both) and performance feedback, we expected that the 
moderators would not influence ERP amplitudes. We did not expect that effect size variability 
would be explained by the experimental paradigm, because these tasks often elicit highly 
correlated amplitudes and have high construct validity (Riesel et al., 2013; Segalowitz et al., 
2010). In cases of comorbidity, we expected that differences in ERN and Pe between the clinical 
and control groups would be smaller for samples that had internalizing comorbid symptoms, 
and greater for samples with externalizing symptoms. We also expected that the presence of 
performance feedback would elicit a greater ERN and Pe than no performance feedback. 

Method 

We did not preregister this study, but to enhance reproducibility and accommodate 
the open science community, our data and code are available at the Open Science Framework 
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(https://osf.io/dkxtp/). We determined a search strategy and inclusion and exclusion criteria 
before our literature search. Secondary to the steps undertaken as described in this report, we 
reviewed the relevant literature (Siddaway et al., 2019), consulted experts and compiled study-
related factors to ensure that we were informed about the state of art in this field. We intended 
to identify as many EEG studies that evaluated ERN and Pe magnitudes in case–control 
(externalizing samples vs. healthy volunteers) studies. 

Search Strategy 

We conducted the literature search using 3 databases: PsycInfo (1980 to December 
2018), PubMed (1980 to December 2018) and Scopus (1970 to December 2018). Search terms 
included the following: inhibit*, cognitive or inhibitory control, error processing or 
monitoring, external* symptoms, disorders and problems, alcohol, cocaine, stimulants, 
heroin, smoking, cannabis, substance abuse, substance use-, dependence-, misuse, 
alcoholism, ADHD, ADD, antisocial personality disorder, oppositional defiant disorder, 
aggression, psychopathy, intermittent explosive disorder, conduct disorder, antisocial 
behaviour, behavioural problems or disorders, psychopathic traits and callous-unemotional 
traits. We cross referenced the above terms with the following: error-related negativity, error 
positivity, ERP, EEG, Eriksen flanker task, go/no-go task and stop-signal task. For complete 
search strategy queries by database, see supplementary materials section 1. 

Eligibility Criteria 

We assessed studies identified from the literature search, together with studies 
identified from other sources, according to the following inclusion criteria: studies were 
published in peer-reviewed journals in English and performed in human volunteers of any age; 
studies addressed error processing using the EEG components ERN (at Fz, FCz and Cz) or Pe 
(Cz), irrespective of the latency window; the ERN and Pe were measured during the Eriksen 
flanker task (Eriksen & Eriksen, 1974), the go/no- go task or the stop-signal task; studies 
included a healthy control group of participants with no clinical or neurologic diagnosis; and 
participants in the patient groups were recruited because they had a clinical diagnosis of an 
externalizing disorder (based on the Diagnostic and Statistical Manual of Mental Disorders, 
fifth edition [DSM-5] or the International Classification of Diseases, 10th revision [ICD-10], or 
earlier versions) or they showed subclinical levels of externalizing problems. Studies were 
excluded according to the following criteria: means and standard deviations of the ERN or Pe 
amplitude for both groups (derived from averaging ERN and Pe epochs where the peak was the 
maximum from error trials) were unavailable from the published report or after contact with 
the authors; studies used adjusted paradigms (e.g., lack of neutral stimuli presented) or stimuli 
that were not presented visually; and studies used the continuous performance task or error 
awareness task (despite including go/no-go elements). 

Data Extraction 
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Records identified through the literature search were imported to Mendeley. In this 
program, we screened titles and abstracts using our inclusion criteria. To avoid unwanted 
exclusion, all articles in which the abstract did not contain full information were kept for 
further reading. Next, we downloaded and read the full text of articles that had passed the 
screening stage, and we reviewed their reference lists to identify additional studies for 
potential inclusion. The first author (ML) extracted relevant information from the included 
studies, retrieving sample characteristics such as sample size, age, sex ratio, disorder (ADHD, 
addiction or other externalizing disorders), condition (clinical v. subclinical), the presence of 
comorbidity (if known, coding for externalizing, internalizing or mixed problems), the use of 
medication and pretesting group differences. We assessed patients’ diagnostic status (clinical 
or subclinical) by extracting the diagnostic tools used (DSM III or IV or ICD-10) and details 
about the informants (specialist, self-report, parent, teacher, or medical or legal reports). A 
study was considered clinical when the diagnosis was obtained by a trained psychologist or 
psychiatrist or when participants were recruited from inpatient treatment facilities. Offenders 
incarcerated for serious crimes were also considered to be clinical. We categorized the studies 
into 5 diagnosis groups: child and adult ADHD, clinical and subclinical addiction (adults only) 
and “other.” Studies with samples of offenders, people with multi-problem behaviour and 
people with high scores on psychopathy or aggression measures were considered “other,” 
leaning toward a sample with forensic characteristics. Participants were considered subclinical 
when no diagnosis was determined, but when diagnostic tools or self-reports indicated 
heightened levels of externalizing problems. To be included in the final analysis, the eligible 
study had to report a cut-off score or level for the diagnostic tool. People were considered 
healthy controls when no clinical or neurologic diagnosis or disabilities were reported. 
Comorbidity was coded as any co-occurring symptom or (sub)clinical level of other 
internalizing (e.g., anxiety) or externalizing (e.g., conduct) problems.  

We also gathered information about the experiment, including the cognitive task 
used, whether the task was adjusted (e.g., instructions the participants received) and latency 
windows. For studies that used multiple experimental manipulations, we systematically 
selected the first or baseline time point, the neutral stimuli trials and, when multiple tasks 
were presented, the Eriksen flanker task. We requested the mean and standard deviation of 
ERN and Pe amplitudes of error trials by contacting authors when articles did not provide this 
information. We also requested unpublished data, but those requests did not lead to viable data 
for our analysis. Two authors (I.V. and M.M.) independently extracted information from the 
manuscripts to verify the work of the first author. For categorical variables, Cohen’s κ was 
between 0.79 and 0.81, indicating strong level of agreement. For continuous variables, 
intraclass correlation was between 0.97 and 0.99, which was near-perfect agreement. We 
evaluated the selected studies primarily on their choice of sample and their experimental 
design. We (M.L., I.V., M.M. and I.F.) discussed whether the selected studies adhered to our 
inclusion and exclusion criteria and whether they were similar enough to be compiled. 

Data Analysis and Small Sample Bias Assessment 
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For both the ERN and Pe meta-analyses, we assumed a random model because of 
variance in the estimates due to different clinical disorders and experimental tasks 
administered (Viechtbauer, 2005). We used restricted maximum likelihood estimation to 
estimate between-study variance (Novianti et al., 2014). As recommended by Veroniki and 
colleagues (2016), we ran analyses with the DerSimonian– Laird and Sidik and Jonkman 
estimators to determine sensitivity, but restricted maximum likelihood estimation resulted in a 
better model fit. We computed standardized mean difference (SMD; Hedges’ g, Hedges, 1981) 
from the means and variances of the ERN and Pe amplitudes, including factor J to reduce 
overestimation of the bias induced by small sample sizes. For studies with multiple 
externalizing groups, we adjusted the weights appointed to effect sizes by splitting the N of the 
control group (Harrer et al., 2019). This was to avoid unit-of-analysis errors or doublecounting 
problems evoked by multiple testing of the control groups. For the ERN, a positive SMD 
indicated reduced amplitude for the externalizing group. For the Pe, a negative SMD indicated 
reduced amplitude for the externalizing group. Both SMDs indicated a diminished 
electrocortical reaction after the error. Effect sizes of 0.2 to 0.3 were considered small; effect 
sizes of approximately 0.5 were considered medium; and effect sizes of 0.8 and higher were 
considered large (Cohen, 1977). We investigated influential or outlier studies based on the 
recommendations of Viechtbauer and Cheung (2010). We evaluated the degree of 
heterogeneity using I2, where a larger value indicated increasing variety in effect sizes Higgins 
& Thompson, 2002; Higgins et al., 2003). We performed subgroup or moderation analyses 
when heterogeneity Cochran’s Q was significant. Moderation analyses for clinical disorder, 
comorbidity, medication use, experimental task and a meta-regression of age were determined 
a priori. Reviewers also suggested that we test the effect of performance feedback and 
electrode site (see supplementary materials, section 4) as additional moderators. 

We examined small sample study bias by assessing asymmetry in funnel plots, 
applying Egger’s test of the intercept (Egger et al., 1997) and Duval and Tweedie’s trim-and-fill 
procedure (Duval & Tweedie, 2000). To detect whether small samples distorted the funnel plots 
created using SMD (Zwetsloot et al., 2017), we performed a sensitivity analysis using adjusted 
funnel plots with 1 √ n on the y axis as a precision estimate, rather than the standard error. In 
the end, the adjusted funnel plots also detected asymmetry as a result of publication bias, not 
only small sample size. We also evaluated the robustness of the effects we found with the fail-
safe N calculation using the Orwin approach (Orwin, 1983). However, these assessments have 
their limitations (Simonsohn et al., 2014a), so we also performed a p curve analysis (Simonsohn 
et al., 2014a; Simonsohn et al., 2014b, Simonsohn et al., 2015), see supplementary materials 
section 5) to inspect whether significant p values (p < 0.0562) provided proof of evidential value 
(for a full description and application of this assessment, see Harrer et al., 2019). As 
recommended by van Aert et al (2016), a p curve analysis is conducted only when I2 is less than 
50% and studies’ effects are in one direction, to allow for robust conclusions. All analyses were 
performed in R (version 1.3.959), using meta (version 4.12.0; Schwarzer, 2007), metafor 
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(version 2.4.0; Viechtbauer, 2010) and dmetar (version 0.0.9000), guided by the instructions of 
Harrer et al (2019). All significance tests were conducted at a significance level of 5%. 

Results 

Figure 1 

PRISMA flow diagram. ERN = error-related negativity; Pe = error positivity; PRISMA = Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses. 

 

  



 

25 
 

Table 1. Characteristics of included studies. 

Study  ERP Diagnosis Ne Nc 
% 
Male 

Me (SD)  Mc (SD)  Comorbidity* 
Experimental 
Paradigm 

Medication 

Number 

of 

trials§ 

ERN 

latency 
window 

(ms) 

Pe 

latency 
window 

(ms) 

Albrecht et al. 2008 Both Child ADHD 68 22 100 11.3 (1.6) 11.2 (1.7) Yes, mix Flanker  Yes, Off 400 0-150 200-500 

Balogh et al. 2017 Both Adult ADHD 26 14 78 26.7 (5.7) 31.5 (11.4) Yes, int Go-NoGo Yes, Off 240 20-70 100-300 

Brazil et al. 2009 Both 
Other: violent 

offenders 
16 18 100 39 (9.5) 37 (6.4) No Flanker No 400 0-150 250-400 

Chang et al. 2009 Both Adult ADHD 36 32 50 23.7 (3.7) 23.7 (3.7) Yes, mix Flanker Yes, Off 480 (-10)-180 120-400 

Chen et al. 2013 ERN 
Clinical 
Addiction 

20 15 100 37.1 (9.5) 32.5 (10) No Flanker Unknown 800 0-100 NA 

Czobor et al. 2017 Pe Adult ADHD 22 29 71 30.6 (9.7) 30.1 (9) No Go-NoGo Yes, On 478 NA 200-400 

Franken et al. 2007 Both 
Clinical 

Addiction 
14 13 78 38.1 (10.2) 32 (13.8) No Flanker Unknown 400 25-75 200-400 

Franken et al. 2010 Pe 
Subclinical 

Addiction 
23 28 48 21.7 (2.7) 21.3 (2.8) No Flanker Unknown 400 NA 200-400 

Franken et al. 2017 Both 
Subclinical 
Addiction 

48 49 49 23.4 (10) 11.9 (8.5) No Flanker Unknown 400 25-75 200-400 

Franken et al. 2018 Both 
Subclinical 

Addiction 
34 34 12 19.9 (1.7) 20.8 (3) No Flanker No 400 NA 200-400 

Groom et al. 2010 Both Child ADHD 23 19 74 16.2 (0.3) 16.1 (2) Yes, ext Go-NoGo Yes, Off 304 (-50)-100 100-350 

Groom et al. 2013 ERN Child ADHD 28 28 96 12.5 (1.8) 12.5 (1.8) Yes, mix Go-NoGo Yes, On 40 (-10)-100 NA 

Herrmann et al. 2010a Pe Adult ADHD 17 9 50 25.2 (4.4) 24.2 (3.1) No Flanker Yes, Off NA NA 110 -450 

Herrmann et al. 2010b Pe Adult ADHD 17 9 56 40.9 (6.8) 39.7 (6.6) No Flanker  Yes, Off NA NA 110 -450 

Jonkman et al. 2007 Pe Child ADHD 10 10 NA 9.5 (2.1) 10.76 (1.2) No Flanker Yes, Off 480 NA 200-450 

Littel et al. 2012 Both 
Subclinical 

Addiction 
25 27 63 20.5 (3) 21.42 (2.6) No Go-NoGo No 636 0-75ms 200-400 

Luijten et al. 2011 Both 
Subclinical 

Addiction 
13 14 70 20.7 (1.3) 21.4 (2.6) No Flanker No 900 25-75 250-350 

Maij et al. 2017a Both 
Clinical 
Addiction 

35 39 76 21.7 (2.1) 22.1 (2.1) Yes, ext Flanker No 400 25-75 150-250 

Maij et al. 2017b Both 
Clinical 

Addiction 
38 39 68 21.4 (2.5) 22.1 (2.1) Yes, ext Flanker No 400 25-75 150-250 
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Table 1. (continued) 

Study ERP Diagnosis Ne Nc 
% 
Male 

Me (SD)  Mc (SD)  Comorbidity* 
Experimental 
Paradigm 

Medication 
Number 
of trials 

ERN 

latency 
window 

(ms) 

Pe 

latency 
window 

(ms) 

Marhe et al. 2013 Both 
Clinical 
Addiction 

49 23 84 39.6 (8.4) 39.9 (9.4) No Flanker Unknown 400 25-100 NA 

Marquardt et al. 2019 Both Adult ADHD 27 28 51 35.3 (8.8) 33.4 (7) Yes, mix Flanker Yes, Off 520 20-60 180-220 

McLoughlin et al. 2009a, Both Adult ADHD 21 20 100 32.5 (5.8) 30 (6.5) No Flanker Yes, Off 400 0-150 200-500 

McLoughlin et al. 2009b, Both Adult ADHD 20 20 100 45.9 (4.2) 30 (6.5) No Flanker No 400 0-250 200-500 

Michelini et al. 2016a, Both Adult ADHD 87 169 67 18.3 (3) 18.8 (2.2) Yes Flanker Yes, Off 400 0-150 NA 

Michelini et al. 2016 b, Both Adult ADHD 23 169 79 18.9 (3) 18.8 (2.2) Yes Flanker Yes, Off 400 0-150 NA 

Morie et al. 2014 Both 
Clinical 

Addiction 
23 27 72 44 (6.6) 41 (8.5) Yes, ext Go-NoGo No 1260 30-70 100-300 

Munro et al. 2007 Both 
Other: violent 

offenders 
15 15 100 45.9 (13.6) 46.6 (6.9) No Flanker Yes, On 480 0-150 150-350 

Rass et al. 2014a, Both 
Clinical 
Addiction 

22 15 52 27.2 (5.3) 25.2 (4.3) No Flanker No 400 (-50)-100 100-250 

Rass et al. 2014b, Both 
Subclinical 

Addiction 
31 15 43 23.9 (4.4) 25.2 (4.3) No Flanker No 400 (-50)-100 100-250 

Sokhadze et al. 2008 ERN 
Clinical 

Addiction 
19 15 56 42.1 (5.5) 37 (9.4) Yes, int Flanker No 960 50-200 NA 

Vilà-Balló et al. 2014 Both 
Other: violent 
offenders 

17 17 100 18.3 (0.3) 18.6 (0.3) No Flanker No 1920 65-115 135-285 

Wiersema et al. 2005 Pe Child ADHD 22 15 65 10.3 (1.6) 10.2 (2) Yes, ext Go-NoGo Yes, Off NA NA 200-500 

Wiersema et al. 2009 Pe Child ADHD 23 19 57 29.3 (11) 30.9 (11) Yes, mix Go- NoGo Yes, Off NA NA 200-400 

Wild-Wall et al. 2009 Both Child ADHD 15 12 71 13.9 (1.6) 13.2 (1.5) Yes, int Flanker Unknown 840 (-50)-200 200-250 

Xue et al. 2017 Pe 
Other: 

aggression 
13 14 44 21.3 (0.9) 21.3 (1.3) No Go-NoGo Unknown 220 NA 100-500 

Zhang et al. 2009 Pe Child ADHD 16 16 NA 7.5 (1.4) 7.6 (1.8) No Go-NoGo Unknown 320 NA 200-400 

Zijlmans et al. 2019 Both 
Other: multi-

problem 
119 26 100 22.5 (2.4) 23.1 (2.6) Yes, ext Flanker Unknown 400 25-100 250-400 

Note. ERP = event related potential, ERN = Error-related negativity, Pe = Error positivity, ADHD = attention deficit hyperactivity disorder, Ne = sample size externalizing group, Nc = sample 

size control group, Me = mean age externalizing group in years, Mc = mean age control group in years, SD = standard deviation age in years, * = comorbid diagnosis or symptoms: ext = 

externalizing, int = internalizing, mix = both external and internalizing, §= number of trials of full paradigm, ms = milliseconds, NA = not applicable (not measured or unknown). 

 



 

27 
 

Selected Studies 

Figure 1 shows a flow chart of the literature search. Where applicable and possible, 
we adhered to PRISMA guidelines (supplementary materials, section 2). The search of 
databases and additional sources yielded a total of 328 records. After removing duplicates and 
reviews (n = 71), we screened the abstracts of 257 studies. We then assessed the full text of the 
82 articles that met our inclusion criteria. We included 31 articles for qualitative analysis, of 
which 23 were ERN studies at the FCz electrode (27 effect sizes; n = 1739) and 27 were Pe 
studies at the Cz electrode (31 effect sizes; n = 1456). We found no studies that used the stop-
signal task. Descriptive information for the included studies is shown in Table 1; further details 
of the included studies are shown in supplementary materials section 3. 

ERN Summary Effect 

The ERN meta-analysis included 23 studies and 1739 participants. We found a small to 
medium overall effect size (g = 0.44, 95% CI 0.29 to 0.58, p < 0.01). This indicated that in the 
patient group, the ERN had a decreased negative amplitude compared to healthy controls. 
Between-study variability was 36%, indicating a low to moderate amount of variability in effect 
sizes. The test for heterogeneity was significant (Q26 = 40.69, p = 0.03), which gave us cause to 
perform moderation analysis. We identified the studies of Sokhadze et al (2008; high effect 
size) and Michelini et al (2016; large sample size) as influential cases. However, we kept these 
studies in the overall analysis because they did not influence the overall model. A forest plot 
for the ERN is presented in Figure 2.  
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Figure 2.  

Overall ERN meta-analysis, including a forest plot. CI = confidence interval; ERN = error-related 
negativity; SD = standard deviation; SMD = standardized mean difference. 

 

ERN Subgroup Analyses 

Moderation analyses revealed no significant difference in ERN amplitudes between 
diagnosis groups (Q4 = 0.66, p = 0.96). Comorbidity did not significantly influence the ERN 
amplitudes (Q3 = 5.11, p = 0.16), and the type of experimental paradigm was not a moderator (Q1 
= 0.01, p = 0.91). The presence of performance feedback also did not account for variability in 
ERN effect size (Q1 = 0.08, p = 0.78). We had initially intended to test the effect of medication, 
but this variable was confounded in the sample of ADHD participants, making further 
investigation futile. For study details, see supplementary materials section 4 for medication, 
and section 5 for electrode site. Table 2 provides an overview of the moderation results for the 
categorical variables. A meta-regression with age as a predictor revealed that age was not 
associated with the effect sizes (F 1,25 = 2.30, p = 0.14).  
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Table 2.  
Results for the multiple moderator analyses for ERN. 

  ERN 

Moderator Categories (k) SMD 95% CI  Q I² p 

Clinical 
diagnosis 
group 

Child ADHD (4) 
Adult ADHD (7) 
Clinical addiction (8) 
Subclinical addiction (4) 
Other (4) 

0.46 
0.40 
0.56 
0.36 
0.44 

[0.26; 0.65] 
[0.05; 0.75] 
[0.18; 0.94] 
[-0.51; 1.24] 
[0.22; 0.67] 

0.51 
13.69 
12.93 
11.03 
0.67 

0% 
56% 
46% 
73% 
0% 

0.92 
0.03 
0.07 
0.01 
0.88 

Comorbidity Yes, mixed (5) 
Yes, internalizing (2) 
Yes, externalizing (5) 
No (15) 

0.58 
- 

0.40 
0.40 

[0.43; 0.73] 
- 

[0.19; 0.61] 
[0.19; 0.60] 

0.76 
- 

1.54 
23.80 

0% 
- 

0% 
41% 

0.94 
- 

0.82 
0.04 

Experimental 
paradigm 

Flanker (22) 
Go-NoGo (5) 

0.43 
0.46 

[0.27; 0.59] 
[-0.10; 1.01] 

31.92 
8.52 

34.2% 
53% 

0.04 
0.07 

Performance 
feedback 

Yes (17) 
No (10) 

0.43 
0.47 

[0.27; 0.58]  
[0.13; 0.82] 

16.97 
23.61 

5.7% 
61.9% 

0.39 
<0.01 

Note. Random models with moderators for ERN studies, with exception for internalizing comorbidity 
(due to fewer than three studies). k = number of studies included in the model; ADHD = attention deficit 
hyperactivity disorder; ERN = error-related negativity; SMD = Standardized mean difference; CI = 
confidence interval; Q = Cochran's test of heterogeneity; I² = measure of heterogeneity; p = significance 
of Cochran's Q statistic, bold if heterogeneity is significant. 
 
ERN Small Sample Study Bias 

To investigate publication bias, we visually inspected the funnel plots of the effect 
sizes. The Egger’s intercept of the funnel plot was significant (B = 2.09, p = 0.03), indicating 
evidence of publication bias. The funnel plot in Figure 3 applies Duval and Tweedie’s trim-and-
fill procedure. Application of this procedure revealed that by filling 7 studies, the overall effect 
would be reduced to small (g = 0.29, 95% CI 0.12 to 0.45, p = 0.001), indicating the presence of 
bias. Despite this bias, 27 studies were needed to get to an unweighted average effect size of 
0.24 using the fail-safe N test. However, a p curve analysis (k = 9) revealed the presence of right 
skewness of the significant p values, and of evidential value (half: Z = –2.33, p = 0.009; full: Z = –
1.43, p = 0.08). The flatness test was not significant (half: Z = 2.73, p = 0.99; full Z = –0.32, p = 
0.37). Although the analysis was underpowered (25%), typical in this field, it indicated that 
there was most likely no selective reporting of p values. The p curve estimate of the average 
“true” effect size was 0.32, which was similar to the trim-and-fill result of 0.29 and lower than 
the combined effect size of the overall analysis (0.44). For a full report, a p value distribution 
figure and results of the p curve analysis, see supplementary materials section 6.  
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Figure 3 

Funnel plot including filled studies for error-related negativity 

 

Pe Summary Effect 

The Pe meta-analysis included 27 studies, incorporating 31 effect sizes and 1456 
participants. We found a small to medium overall effect size (g = –0.27, 95% CI –0.44 to –0.09, p 
= 0.004), indicative of decreased amplitude of the Pe waveform for the externalizing group 
compared to controls. We observed a moderate degree of heterogeneity (I2 = 52%, Q30 = 62.74, p 
= 0.004), which gave us cause for further exploration of effect size variability through subgroup 
analysis. A forest plot for the Pe is presented in Figure 4.  
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Figure 4 

Overall Pe meta-analysis, including a forest plot. CI = confidence interval; Pe = error positivity; SD = 
standard deviation; SMD = standardized mean difference. 

 

Pe Subgroup Analysis 

Diagnosis was not a moderator for the Pe effect sizes (Q4 = 5.17, p = 0.22), nor was 
comorbidity (Q3 = 1.61, p = 0.66). The presence of feedback did not account for variability in Pe 
effect size (Q1 = 2.58, p = 0.12). The experimental paradigm was a moderator in this meta-
analysis. The go/no-go task generated a greater difference in Pe amplitudes (SMD = –0.54, k = 9) 
than the Eriksen flanker task (SMD = –0.15, k = 22; Q1 = 4.17, p = 0.041). Similar to the ERN, 
medication use was confounded in the ADHD sample, making further moderation analysis 
ineffective (supplementary materials section 4). Age did not explain the variability in effect 
sizes for Pe (F 1,27 = 0.02, p = 0.88). Table 3 shows the results of the moderation analysis for the 
categorical variables.   
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Table 3.  
Results for the multiple moderator analyses for Pe. 

  Pe 

Moderator Categories (k) SMD 95% CI  Q I² p 

Clinical 
diagnosis 
group 

Child ADHD (7) 
Adult ADHD (8) 
Clinical addiction (5) 
Subclinical addiction (5) 
Other (6) 

-0.39 
-0.56 
-0.15 
-0.09 
-0.08 

[-0.70; -0.08] 
[-1.15; 0.04] 
[-0.66; 0.36] 
[-0.40; 0.23] 
[-0.55; 0.40] 

6.04 
28.86 
6.81 
5.9 
6.14 

0% 
76% 
41% 
15% 
35% 

0.42 
<0.01 
0.15 
0.30 
0.19 

Comorbidity Yes, mixed (4) 
Yes, internalizing (2) 
Yes, externalizing (19) 
No (6) 

-0.23 
- 

-0.07 
-0.28 

[-0.85; 0.40] 
- 

[-0.48; 0.34] 
[-0.47; -0.10] 

6.59 
- 

9.65 
23.84 

54% 
- 

48% 
24% 

0.09 
- 

0.09 
0.16 

Experimental 
paradigm 

Flanker (22) 
Go-NoGo (9) 

-0.15 
-0.53 

[-0.33; 0.04] 
[-0.92; -0.15] 

36.01 
17.14 

42% 
53% 

0.02 
0.03 

Performance 
feedback 

Yes (20) 
No (11) 

-0.16 
-0.47 

[-0.34; 0.02] 
[-0.86; -0.08] 

28.40 
30.08 

33.1% 
66.8% 

0.08 
<0.01 

Note. Random models with moderators for Pe studies, with exception for internalizing comorbidity (due 
to fewer than three studies). k = number of studies included in the model; ADHD = attention deficit 
hyperactivity disorder; Pe = error positivity; SMD = Standardized mean difference; CI = confidence 
interval; Q = Cochran's test of heterogeneity; I² = measure of heterogeneity; p = significance of Cochran's 
Q statistic, bold if heterogeneity is significant. 
 

Pe Small Sample Study Bias 

The Egger’s intercept (B = –2.45, p = 0.019) was significant, indicating asymmetry in the 
funnel plot for the Pe studies. The funnel plot in Figure 5 includes studies that needed to be 
added to make the plot symmetrical using Duval and Tweedie’s trim-and-fill procedure. This 
procedure revealed that by filling 5 studies, the overall effect was reduced (g = –0.15, 95% CI –
0.35 to 0.05), meaning that the Pe meta-analysis could be contaminated by publication bias. 
However, the fail-safe N assessment revealed that there needed to be 31 effect sizes to achieve 
the unweighted effect size of –0.16. We performed a preliminary p curve analysis, but it was 
inconclusive (see supplementary materials section 6 for explanation).  
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Figure 5 

Funnel plot including filled studies for error positivity. 

 

Discussion 

This meta-analysis collated current EEG studies on error processing to test whether 
the ERN and Pe amplitude were different in people with externalizing problems or disorders 
compared to controls. As expected, we found diminished ERN and Pe amplitude for people 
with externalizing problems or disorders compared to controls. These findings confirmed 
compromised error processing in the externalizing spectrum, regardless of a specific diagnosis 
or problem behaviour. For both ERP components, we found a considerable degree of 
heterogeneity. The variation in results was not explained by comorbidity, the presence of 
performance feedback, age or type of clinical disorder. The experimental paradigm was a 
moderator for the Pe studies, but not for the ERN studies. Our results for the ERN were in line 
with a recent meta-analysis by Pasion and Barbosa (2019) and studies that described error 
processing deficits in separate externalizing disorders (such as Luijten et al., 2014 and Olvet & 
Hajcak, 2008 for substance use disorders; Shiels and Hawk, 2010 for ADHD; and Lo, 2018 for 
children with externalizing symptoms). This was the first meta-analysis to explore age effects 
in error processing and to confirm deficits in the late error processing component (Pe) for 
children and adults with externalizing problems and disorders. 

Diminished ERN and Pe imply a deviant activation pattern of the dorsal anterior 
cingulate cortex Botvinick et al. (2004). More specifically, when we consider reinforcement and 
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learning-based theories of the function of the ERN, decreased ERN amplitude could be 
indicative of abnormal dopamine activity in the midbrain, affecting processes of error and 
conflict detection. Dysfunction in the dorsal anterior cingulate cortex is also indicative of 
deficits in inhibitory control and conflict monitoring (Luijten et al., 2014; Morie et al., 2015; 
Ridderinkhof et al., 2004). Problems in inhibitory control and conflict monitoring (among 
other cognitive impairments) have been related to symptomatology in externalizing disorders, 
such as craving in addiction (Czermainski et al., 2017). Based on the proposed hypotheses for 
Pe (Overbeek et al., 2005), affected Pe amplitudes reflect differences in conscious recognition 
of the error committed, differences in emotional appraisal of the error and its consequences, 
or distinct behavioural adjustment after errors. In turn, such deviation in the processing of 
errors could imply reduced insight in aberrant and unwanted behaviour for externalizing 
samples. 

The data revealed a considerable amount of heterogeneity for both ERPs, but type of 
diagnosis, age and the presence of performance feedback or comorbidity did not moderate the 
results. Studies that controlled for medication use in their samples appeared mostly to be in 
ADHD, preventing us from examining medication use across other externalizing samples. 
Although medication use is evident in externalizing samples, many studies have not reported 
or controlled for medication. Future experiments and systematic reviews should consider the 
effect of medication on error processing components for different externalizing samples. The 
experimental task did moderate the association of externalizing problems with Pe and not 
ERN: we found a greater Pe amplitude difference between the patient group and the control 
group in the go/no-go task than in the Eriksen flanker task. Although both tasks are known to 
reliably elicit an electrophysiological reaction after an error (Riesel et al., 2013; Segalowitz et 
al., 2010), it is possible that the go/no-go task elicits a stronger reaction to an error than the 
Eriksen flanker task. As well, it is possible that the Eriksen flanker task allows the participant 
to be more unconscious of an error than the go/no-go task, because the Pe is said to reflect 
conscious awareness of the error (Overbeek et al., 2005). Finally, contrary to our expectations, 
comorbidity did not affect the ERN or Pe amplitude in this sample. Although we proposed to 
test whether internalizing comorbid problems influenced the ERPs, not enough studies were 
included to properly test this hypothesis and draw firm conclusions. 

We performed small bias assessment to investigate the effect of the published data in 
this study. For the ERN, the result of the trim-and-fill procedure remained significant even 
after adding 5 studies. The estimated “true” effect size was included in the confidence interval 
of the overall model, along with evidence of the evidential value from the p curve analysis, 
indicating that the combined effect size for the ERN was robust. However, for the Pe, we found 
evidence of publication bias (although an inconclusive p curve analysis), because the trim-and-
fill analysis reduced the effect size to non-significant. Although this nonsignificant effect could 
have been because of large heterogeneity, reflected in the broad confidence interval, we 
should be cautious in drawing firm conclusions about the Pe meta-analysis. 



 

35 
 

Limitations 

We should acknowledge the limitations of this study and the methodological 
considerations of EEG research in general. The present meta-analysis included studies with 
ERN amplitudes on the FCz electrode and Pe amplitudes on the Cz electrode, generated by the 
Eriksen flanker and go/no- go tasks. These criteria allowed for solid results (supplementary 
analysis revealed no effect of electrode site), but other electrodes (see Arbel & Donchin, 2009 
for a summary of reliable electrodes for error processing), neurophysiological measures (e.g., 
functional MRI) and experimental paradigms can be used to examine error processing. Future 
research should be directed at investigating whether similar error processing deficits are found 
at other electrode sites and using other tasks. In addition, investigating deficits in 
biobehavioural markers of performance monitoring, such as post-error slowing (indicative of 
response caution for maintaining accuracy) and cortisol involvement (Tops & Boksem, 2011) 
can shed light on responses and behaviour after errors, elucidating different behaviour 
patterns. Although we considered a substantial number of potential moderators in this study, 
other sample characteristics could have accounted for differences in the ERP findings. For 
example, the global assessment of functioning of patients with a specific psychiatric disorder 
could influence the magnitude of deficits in error processing. Future studies could examine 
whether the severity of symptoms within a disorder is related to the degree of diminished 
reaction (that is, correlational measures with ERP amplitudes). As well, individual differences 
such as personality traits have been known to influence the ERN and Pe (Lo, 2018; Overbeek et 
al., 2005) and we did not control for these factors in this study. Furthermore, we should be 
cautious of the results (particularly indicated by the publication bias assessment) because of 
variations in quality in the EEG experiments. Although the current study evaluated the 
included experiments, differences between experiments could have influenced our results. We 
could not assess some aspects of experimental design, such as the manner in which the ERN or 
Pe were quantified or the effects of task adjustments, because this information was not 
provided in the reports. To address the possible effect of experimental design differences on 
the associations between ERP or Pe with externalizing problems in the future, we encourage 
researchers to disclose the following information: the minimum number of trials or errors for 
a reliable ERP calculation (e.g., 816 or 696 trials for a reliable ERN); which trials were used 
(incongruent or error trials) to calculate the ERP; and a clear description of the task 
instructions and adjustments (e.g., error rate to ensure task difficulty, participant instructions 
or feedback to influence performance); and other potential confounding variables such as 
medication use and latency window. 

Future work could investigate error processing in specific externalizing disorders that 
are underexplored in the current literature, such as antisocial personality disorder, specific 
addictions (e.g., Internet addiction disorder) and double diagnoses (e.g., addiction and a 
personality disorder). We recommend that future work examine the predictive value of the 
ERN and Pe using large-scale longitudinal designs to elucidate their role in the etiology of these 
disorders. We also encourage researchers to assess the feasibility of interventions aimed at 
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improving error processing. To improve error processing abilities in patients, next steps for 
future experiments could include examinations of the effectiveness of behavioural training, 
medication and neuro-modulation techniques. 

Conclusion 

Our meta-analysis showed that the neurophysiological correlates of error processing, 
ERN and Pe, were reduced in children and adults with externalizing problems or disorders. 
However, we found considerable heterogeneity that could not be explained by the moderators 
explored in this study; this warrants further exploration and limits strong conclusions. Future 
research can elucidate the role of individual differences, symptom severity and experimental 
characteristics in error processing deficits specific to externalizing disorders. With the 
knowledge that the EEG correlates of error processing are affected in people with internalizing 
problems and could serve as a possible marker for these disorders, we propose that reduced 
ERN and Pe could be considered markers for the externalizing spectrum of disorders. 
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Section 1: Full search query for literature search strategy. 

Table S1. Search query for literature search. 
Database Query Number of 

studies 
PsychInfo 1. (external* symptoms or external* disorders or external* problems or "substance use" or 

substance abuse or substance misuse or substance dependence or alcohol addiction or 
alcoholism or cocaine addiction or "cocaine use" or "stimulant use" or heroin addiction or 
"heroin use" or smoking or "cannabis use" or cannabis addiction or drug addiction or drug 
dependence or ADHD or attention deficit hyper activity disorder or "attention deficit-hyper 
activity disorder" or attention deficit disorder or antisocial personality disorder or antisocial 
behavior or oppositional defiant disorder or "oppositional-defiant disorder" or aggression or 
conduct disorder or psychopathic traits or psychopathy or "callous-unemotional traits" or 
behavioral disorders or behavioral problems).mp. 2. (Eriksen Flanker paradigm task or Eriksen 
Flanker task or modified Eriksen Flanker or "Eriksen Flanker task-modified" or Simon Eriksen 
Flanker task or Eriksen Flanker test or "Eriksen-Flanker task" or stop signal task or "stop-signal 
task" or "go-no go task").mp 3. (ERN or error related negativity or Ne or error negativity or Pe or 
error positivity or evoked potentials or ERP or event related potentials or EEG or 
electroencephalography).mp. 4. (inhibit* or error processing or error monitoring or cognitive 
control or inhibitory control, behavioral or response inhibition).mp. 5. 1 and 2 and 3 and 4 

110 

Scopus ( ( TITLE-ABS-KEY ( "behavioral inhibit*"  OR  "response inhibit*"  OR  "error 
processing"  OR  "error monitoring" ) )  AND  ( TITLE-ABS-KEY ( "error related 
negativity"  OR  "error negativity"  OR  "error positivity"  OR  "evoked potentials"  OR  "event 
related potentials"  OR  electroencephalography ) )  AND  ( TITLE-ABS-KEY ( "external* 
symptoms"  OR  "external* disorders"  OR  "external* problems"  OR  "substance 
use"  OR  "substance abuse"  OR  "substance misuse"  OR  "substance dependence"  OR  "alcohol 
addiction"  OR  alcoholism  OR  "cocaine addiction"  OR  "cocaine use"  OR  "stimulant 
use"  OR  "heroin addiction"  OR  "heroin use"  OR  smoking  OR  "cannabis use"  OR  "cannabis 
addiction"  OR  "drug addiction"  OR  "drug dependence"  OR  adhd  OR  "attention deficit hyper 
activity disorder"  OR  "attention deficit-hyper activity disorder"  OR  "attention deficit 
disorder"  OR  "antisocial personality disorder"  OR  "antisocial behavior"  OR  "oppositional 
defiant disorder"  OR  "oppositional-defiant disorder"  OR  aggression  OR  "conduct 
disorder"  OR  "psychopathic traits"  OR  "psychopathy"  OR  "callous-unemotional 
traits"  OR  "behavioral disorders"  OR  "behavioral problems" ) ) )  AND NOT  ( ( ( ( TITLE-ABS-
KEY ( "behavioral inhibit*"  OR  "response inhibit*"  OR  "error processing"  OR  "error 
monitoring" ) )  AND  ( TITLE-ABS-KEY ( "error related negativity"  OR  "error 
negativity"  OR  "error positivity"  OR  "evoked potentials"  OR  "event related 
potentials"  OR  electroencephalography ) ) )  AND  ( TITLE-ABS-
KEY ( ( flanker  AND  task )  OR  ( go/no-go  AND  task )  OR  ( stop-
signal  AND  task ) ) ) )  AND  ( TITLE-ABS-KEY ( "external* symptoms"  OR  "external* 
disorders"  OR  "external* problems"  OR  "substance use"  OR  "substance 
abuse"  OR  "substance misuse"  OR  "substance dependence"  OR  "alcohol 
addiction"  OR  alcoholism  OR  "cocaine addiction"  OR  "cocaine use"  OR  "stimulant 
use"  OR  "heroin addiction"  OR  "heroin use"  OR  smoking  OR  "cannabis use"  OR  "cannabis 
addiction"  OR  "drug addiction"  OR  "drug dependence"  OR  adhd  OR  "attention deficit hyper 
activity disorder"  OR  "attention deficit-hyper activity disorder"  OR  "attention deficit 
disorder"  OR  "antisocial personality disorder"  OR  "antisocial behavior"  OR  "oppositional 
defiant disorder"  OR  "oppositional-defiant disorder"  OR  aggression  OR  "conduct 
disorder"  OR  "psychopathic traits"  OR  "psychopathy"  OR  "callous-unemotional 
traits"  OR  "behavioral disorders"  OR  "behavioral problems" ) ) ) 

155 

PubMed ((behavioral inhibit*[Text Word] OR behavioural inhibit*[Text Word] OR response inhibit*[Text 
Word] OR error processing[Text Word] OR error monitoring[Text Word])) AND ((error related 
negativity[Text Word] OR error negativity[Text Word] OR error positivity[Text Word] OR evoked 
potentials[Text Word] OR event related potentials[Text Word] OR electroencephalography[Text 
Word] OR EEG[Text Word])) AND (Eriksen Flanker paradigm task[Text Word] OR Eriksen 
Flanker task[Text Word] OR modified Eriksen Flanker[Text Word] OR Eriksen Flanker task-
modified[Text Word] OR Simon Eriksen Flanker task[Text Word] OR Eriksen Flanker test[Text 
Word] OR Eriksen-Flanker task[Text Word] OR stop signal task[Text Word] OR stop-signal 
task[Text Word] OR go-no go task[Text Word]) AND (externalizing symptoms[Text Word] OR 
externalising symptoms[Text Word] OR external symptoms[Text Word] OR externalizing 
disorders[Text Word] OR externalising disorders[Text Word] OR external disorders[Text Word] 
OR externalizing problems[Text Word] OR externalising problems[Text Word] OR external 
problems[Text Word] OR substance use[Text Word] OR substance abuse[Text Word] OR 

53 
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substance misuse[Text Word] OR substance dependence[Text Word] OR alcohol addiction[Text 
Word] OR alcoholism[Text Word] OR cocaine addiction[Text Word] OR cocaine use[Text Word] 
OR stimulant use[Text Word] OR heroin addiction[Text Word] OR heroin use[Text Word] OR 
smoking[Text Word] OR cannabis use[Text Word] OR cannabis addiction[Text Word] OR drug 
addiction[Text Word] OR drug dependence[Text Word] OR adhd[Text Word] OR attention 
deficit hyper activity disorder[Text Word] OR attention deficit-hyper activity disorder[Text 
Word] OR attention deficit disorder[Text Word] OR antisocial personality disorder[Text Word] 
OR antisocial behavior[Text Word] OR antisocial behaviour[Text Word] OR oppositional defiant 
disorder[Text Word] OR oppositional-defiant disorder[Text Word] OR aggression[Text Word] 
OR conduct disorder[Text Word] OR psychopathic traits[Text Word] OR psychopathy[Text 
Word] OR callous-unemotional traits[Text Word] OR behavioral disorders[Text Word] OR 
behavioural disorders[Text Word] OR behavioral problems[Text Word] OR behavioural 
problems[Text Word]) 

Note. This is the initial search query, therefore the number of studies identified include duplicates and 
review papers. 
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Section 2: PRISMA checklist for PRISMA guidelines. 

Section/topic  # Checklist item  
Reported on 
page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; 
objectives; data sources; study eligibility criteria, participants, and 
interventions; study appraisal and synthesis methods; results; limitations; 
conclusions and implications of key findings; systematic review 
registration number.  

2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already 
known.  

4, 8 

Objectives  4 Provide an explicit statement of questions being addressed with reference 
to participants, interventions, comparisons, outcomes, and study design 
(PICOS).  

7,6 

METHODS   

Protocol and 
registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., 
Web address), and, if available, provide registration information 
including registration number.  

NA 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report 
characteristics (e.g., years considered, language, publication status) used 
as criteria for eligibility, giving rationale.  

9,10 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, 
contact with study authors to identify additional studies) in the search and 
date last searched.  

9 

Search  8 Present full electronic search strategy for at least one database, including 
any limits used, such that it could be repeated.  

Supplementary 
material, 
section 1 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included 
in systematic review, and, if applicable, included in the meta-analysis).  

8,9 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., piloted forms, 
independently, in duplicate) and any processes for obtaining and 
confirming data from investigators.  

10,11 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, 
funding sources) and any assumptions and simplifications made.  

12,13 

Risk of bias in 
individual studies  

12 Describe methods used for assessing risk of bias of individual studies 
(including specification of whether this was done at the study or outcome 
level), and how this information is to be used in any data synthesis.  

NA 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in 
means).  

12,13 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, 
if done, including measures of consistency (e.g., I2) for each meta-
analysis.  

12,13 
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Section 2 continued 
 

 
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*, T. (2009). Preferred reporting 
items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 
151(4), 264-269. https://doi.org/10.1371/journal.pmed1000097  
 

For more information, visit: www.prisma-statement.org.  

Section/topic  # Checklist item  
Reported on 
page #  

Risk of bias 
across studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence 
(e.g., publication bias, selective reporting within studies).  

NA 

Additional 
analyses  

16 Describe methods of additional analyses (e.g., sensitivity or subgroup 
analyses, meta-regression), if done, indicating which were pre-specified.  

13 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the 
review, with reasons for exclusions at each stage, ideally with a flow diagram.  

Figure 1 

Study 
characteristics  

18 For each study, present characteristics for which data were extracted (e.g., 
study size, PICOS, follow-up period) and provide the citations.  

Table 1 

Risk of bias 
within studies  

19 Present data on risk of bias of each study and, if available, any outcome level 
assessment (see item 12).  

NA 

Results of 
individual 
studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) 
simple summary data for each intervention group (b) effect estimates and 
confidence intervals, ideally with a forest plot.  

Figure 2, 4  

Synthesis of 
results  

21 Present results of each meta-analysis done, including confidence intervals and 
measures of consistency.  

15-18 

Risk of bias 
across studies  

22 Present results of any assessment of risk of bias across studies (see Item 15).  Figure 3, 5 

 

Additional 
analysis  

23 Give results of additional analyses, if done (e.g., sensitivity or subgroup 
analyses, meta-regression [see Item 16]).  

16,18 

DISCUSSION   

Summary of 
evidence  

24 Summarize the main findings including the strength of evidence for each 
main outcome; consider their relevance to key groups (e.g., healthcare 
providers, users, and policy makers).  

20-22 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at 
review-level (e.g., incomplete retrieval of identified research, reporting bias).  

23 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, 
and implications for future research.  

25 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., 
supply of data); role of funders for the systematic review.  

1 
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Section 3: Experimental details included studies  

Table S2. Experimental characteristics of included studies. 
Study ERP Experimental 

Paradigm 
Number of 
Trials§ 

Medication ERN Latency 
window (ms) 

Pe Latency 
window (ms) 

Presence of 
Feedback 

Albrecht et al. 200841 Both Flanker 400 Yes, Off 0-150 200-500 Yes 
Balogh et al. 201766 Both Go-NoGo 240 Yes, Off 20-70 100-300 No 
Brazil et al. 200967 Both Flanker 400 No 0-150 250-400 NA 
Chang et al. 200968 Both Flanker 480 Yes, Off (-10)-180 120-400 No 
Chen et al. 201369 ERN Flanker 800 Unknown 0-100 NA No 
Czobor et al. 201770 Pe Go-NoGo 478 Yes, On NA 200-400 No 
Franken et al. 200742 Both Flanker 400 Unknown 25-75 200-400 Yes 
Franken et al. 201062 Pe Flanker 400 Unknown NA 200-400 Yes 
Franken et al. 201728 Both Flanker 400 Unknown 25-75 200-400 Yes 
Franken et al. 201872 Both Flanker 400 No NA 200-400 Yes 
Groom et al. 201073 Both Go-NoGo 304 Yes, Off (-50)-100 100-350 No 
Groom et al. 201332 ERN Go-NoGo 40 Yes, On (-10)-100 NA Yes 
Hermann et al. 2010a,74 Pe Flanker NA Yes, Off NA 110-450 Yes 
Hermann et al. 2010b,74 Pe Flanker NA Yes, Off NA 110-450 Yes 
Jonkman et al 200775 Pe Flanker 480 Yes, Off NA 200-450 Yes 
Littel et al. 201276 Both Go-NoGo 636 No 0-75 200-400 No 
Luijten et al. 201143 Both Flanker 900 No 25-75 250-350 Yes 
Maij et al. 2017a,77 Both Flanker 400 No 25-75 150-250 Yes 
Maij et al. 2017b,77 Both Flanker 400 No 25-75 150-250 Yes 
Marhe et al. 201378 Both Flanker 400 Unknown 25-100 NA Yes 
Marquardt et al. 201879 Both Flanker 520 Yes, Off 20-60 180-220 Yes 
McLoughlin et al. 2009a,80 Both Flanker 400 Yes, Off 0-150 200-500 Yes 
McLoughlin et al. 2009b,80 Both Flanker 400 No 0-250 200-500 Yes 
Michelini et al. 2016a,81 Both Flanker 400 Yes, Off 0-150 NA No 
Michelini et al. 2016b,81 Both Flanker 400 Yes, Off 0-150 NA No 
Morie et al. 201482 Both Go-NoGo 1260 No 30-70 100-300 Yes 
Munro et al. 200783 Both Flanker 480 Yes, On 0-150 150-350 Yes 
Rass et al. 2014a,44 Both Flanker 400 No (-50)-100 100-250 Yes 
Rass et al. 2014 b,44 Both Flanker 400 No (-50)-100 100-250 Yes 
Sokhadze et al. 200884 ERN Flanker 960 No 50-200 NA No 
Vilà-Balló et al. 201485 Both Flanker 1920 No 65-115 135-285 No 
Wiersema et al. 200530 Pe Go-NoGo NA Yes, Off NA 200-500 No 
Wiersema et al. 200926 Pe Go-NoGo NA Yes, Off NA 200-400 No 
Wild-Wall et al. 200945 Both Flanker 840 Unknown (-50)-200 200-250 Yes 
Xue et al. 201786 Pe Go-NoGo 220 Unknown NA 100-500 No 
Zhang et al. 200987 Pe Go-NoGo 320 Unknown NA 200-400 Yes 
Zijlmans et al. 201988 Both Flanker 400 Unknown 25-100 250-400 Yes 
Note. ERP = event related potential, ERN = Error-related negativity, Pe = Error positivity, §= number of trials of full paradigm, ms = milliseconds, NA = not applicable (not 
measured or unknown). 
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Section 4: Inspection possible medication effects  

Table S3. Moderation analysis of medication 

Medication 
as a 
Moderator 

Categories (k) SMD 95% CI  Q I² p 

ERN Yes, temporarily off (8) 
Yes, on during experiment 
(2) 
No (11) 
Unknown (6) 

0.38 
0.34 
0.50 
0.47 

[0.10; 0.67] 
- 
[0.20; 0.81] 
[0.12; 0.81] 

12.62 
- 
18.82 
7.64 

44.5% 
- 
46.9% 
34.6 

0.08 
- 
0.04 
0.18 

Pe Yes, temporarily off (13) 
Yes, on during experiment 
(2) 
No (9) 
Unknown (7) 

-0.51 
-0.04 
-0.45 
-0.09 

[-0.85; -0.18] 
- 
[-0.32; 0.23] 
[-0.42; 0.24] 

30.78 
- 
11.00 
8.51 

61.0% 
- 
27.4% 
29.5 

<0.01 
- 
0.20 
0.20 

Note. Random models with medication as a possible moderator. k = number of studies included in the 
model; ADHD = attention deficit hyperactivity disorder; ERN = error-related negativity; SMD = 
Standardized mean difference; CI = confidence interval; Q = Cochran's test of heterogeneity; I² = 
measure of heterogeneity; p = significance of Cochran's Q statistic, bold if heterogeneity is significant. 
 
Conclusion: 
Only two studies for each ERP (ERN: Groom et al., 2013 and Munro et al., 2007; Pe: Czobor et al., 2017 
and Munro et al., 2007) reported that participants were on medication, so it is not possible to interpret 
these results. Also, this analysis should be interpreted with caution: the studies that reported yes on 
medication, either chronical use but temporarily off or on during experimentation, were predominantly 
children and adults with ADHD. We do not know what medication they were on. In addition, substantial 
studies did not report their medication check and were classified as unknown, but it is possible that this 
group included studies that had participants on medication during experimentation.  
Moderation analysis for ERN revealed no effect of medication, Q (3)= 1.12, p = 0.77. For Pe, the 
moderation analysis did not reach significance level, Q (3)= 7.64, p = 0.0542. For both ERP’s, there was 
still evidence of heterogeneity, suggesting that this moderator cannot account for the variability of effect 
sizes in the current sample.  
We recommend that future experiments report on the role of medication in their results and urge future 
reviews in this field to investigate the effects of medication in this spectrum of disorders.  
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Section 5: Inspection possible electrode site effects 

To investigate the impact of electrode site in this meta-analysis, we added the ERN means and standard 
deviations amplitudes of Fz and Cz, and we conducted a moderation analysis. Full model (k = 63, 
excluding 6 outliers) revealed a pooled effect size of g = 0.37 with 95% CI [.29, .46], p < 0.0001. The lower 
pooled effect size (from 0.44 to 0.37) already indicates that the effect is still present but that, as expected, 
the effects sizes on other electrodes are a bit weaker. Moderation analyses revealed that there was not a 
significant difference of electrode site on amplitudes, Q (2) = 1.88, p = 0.39. The pooled effect size of 
electrode Fz (k=16) is g = 0.31, 95% CI [.13, .49] and at Cz (k = 21), the pooled effect size was g = 0.33, 95% 
CI [.17, .49]. We can conclude that the strongest difference between the experimental and control group 
is visible at FCz, and to a lesser extend at Fz and Cz.  

However, there is a possible dependency between the electrodes (finding an effect on one electrode 
increases the chance of finding another effect on surrounding electrodes) and some samples were tested 
multiple times in the model, possibly inflating results. We opted to inspect the effect of electrode site 
through a multi-level meta-analysis. This approach allows to control for dependency and provides an 
adequate display of the heterogeneity (which was considerate for ERN) at each level of the data.  

In the multi-level model, electrode site (differences in effect sizes due to electrode site within persons) 
was level 1, between group differences (experimental vs. controls) at level 2 and between study 
differences at level 3. The overall multi-level model revealed a pooled effect size of g = 0.39 with 95% CI 
[.28, .50], p < 0.0001. This is similar to the full model mentioned above. 

In the multi-level model, 58% of the variances in effect sizes can be attributed to level 1, 42% at level 2 
and 0% at level 3. High variance at level 1 means that the effect sizes vary to a large degree, reflecting 
substantial magnitude differences at electrode site. The variance at level 2 (between group differences) 
is similar to the heterogeneity found in the ERN at FCz meta-analysis (36%). This degree of variance 
suggests that there are possible subgroups in the data that could explain the range of effect sizes. No 
variation at level 3 was observed, as the lower levels take up all the variation, suggesting that between 
study differences are less influential than the within study differences.   

Data and code are available by accessing the project on the Open Science Framework: 
https://osf.io/dkxtp/. 
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Section 6: P-curve analysis.  

For the disclosure table of included studies for the p-curve analyses and data script, please find the 
current project on first author’s Open Science Framework profile.  

 
Figure S1 P-value distribution ERN 
 
Interpretation 
Note: the p-curve analysis is sensitive to the number of studies/sample size, the following interpretation 
should keep this in mind.  
 
The ERN p-value analysis indicated the half p-curve significant, Z = -2.33, p = 0.0098 and the full p-curve 
to be not significant, Z = -1.43, p = 0.0757 (figure S5). However, both values are below 0.1 suggesting that 
the ERN studies contain the evidential value. Also, the evidential was not inadequate, as both the half 
and full p-curve of the 33% power test were not significant, Zfull=-0.32, pfull=.3729, Zhalf=2.73, phalf=.996. The 
estimated power of the selected studies was 25%, which is considered low but expected as this is typical 
for EEG experimentation. 
 
Taken together with the results of the other assessments mentioned in the manuscript, only this analysis 
can conclude that the studies included contain the evidential value and it is unlikely that selective 
reporting of significant p-values for ERN has occurred.  
 
The Pe p-curve analysis indicated that both the half and full p-curve were not significant, Z=1, p=.8411 Z=-
0.36, p=.3593, suggesting that the selected studies do not contain the evidential value (figure S6). Also, 
the evidential is inadequate or absent, as the 33% power test of both the full and half curve were below 
the p<0.1, Zfull=-2.16, pfull=.0153, Zhalf=1.37, phalf=.9147. This can imply that replicating these results will be 
difficult. Similar to the ERN, the value of power was low, 5%. 
It is worth mentioning the following; for the Pe, many studies did not qualify for the p-curve analysis, as 
they reported non-significant effect, but yet were published. Interpreting the following results together 
with the results mentioned in the manuscript suggests that we cannot conclude that selective reporting 
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of p-values has occurred, but that the p-values that are reported are random. For now, this means that 
there were simply a few studies that met the ‘criteria’ for this analysis, because of lack of hypothesis 
reporting or lack significant p-values. 

 
Figure S2 P-value distribution Pe. 
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Chapter 3 

 

 

Event-Related Potential (ERP) Measures of Error Processing as Biomarkers of 
Externalizing Disorders: A Narrative Review 

 

 

This chapter is published as:  

Lutz, M. C., Kok, R., & Franken, I. H. A. (2021). Event-related potential (ERP) measures of error 
processing as biomarkers of externalizing disorders: A narrative review. International Journal of 
Psychophysiology, 166, 151-159. https://doi.org/10.1016/j.ijpsycho.202  
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Abstract 

Previous studies have shown that electrophysiological measures of error processing are 
affected in patients at risk or diagnosed with internalizing disorders, hence, suggesting that 
error processing could be a suitable biomarker for internalizing disorders. In this narrative 
review, we will evaluate studies that address the role of event-related potential (ERP) measures 
of error-processing in externalizing disorders and discuss to what extend these can be 
considered a biomarker for externalizing disorders. Currently, there is evidence for the notion 
that electrophysiological indices of error processing such as the error-related negativity (ERN) 
and error positivity (Pe) are reduced in individuals with substance use disorders, attention-
deficit/hyperactivity disorder, and in forensic populations. However, it remains unclear 
whether this is also the case for other understudied disorders such as behavioral addiction. 
Furthermore, to fully understand how these deficits affect day to day behavior, we encourage 
research to focus on testing current theories and hypotheses of ERN and Pe. In addition, we 
argue that within an externalizing disorder, individual differences in error processing deficits 
may be related to prognosis and gender of the patient, methodological issues and presence of 
comorbidity. Next, we review studies that have related treatment trajectories with ERP 
measures of error processing, and we discuss the prospect of improving error processing as a 
treatment option. We conclude that ERP measures of error processing are candidate 
biomarkers for externalizing disorders, albeit we strongly urge researchers to continue looking 
into the predictive value of these measures in the etiology and treatment outcome through 
multi-method and longitudinal designs. 
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Event-Related Potential (ERP) Measures of Error Processing as Biomarkers of Externalizing 
Disorders: A Narrative Review. 

The observation that some persons make more repeating mistakes than others was 
already a subject of study millennia ago by Roman philosophers such as Seneca the younger 
(“To err is human, to repeat error is of the devil”) and Cicero (“Anyone can err, but only the 
fool persists in his fault”). These observations already constituted the idea that the persistence 
of making errors might be related to abnormal behavior. In modern times, the question why 
some people do not learn from their mistakes is still relevant and unanswered. The increasing 
knowledge about cognitive neuroscience can help to answer this question and enables us to 
investigate error processing by making use of modern psychophysiological techniques such as 
electroencephalography (EEG) and magnetic resonance imaging (MRI). 

In the current paper we assume that the repeated making of errors is a common 
hallmark for externalizing behaviors, which are characterized by a pattern of inability to 
inhibit unwanted behaviors and properly adapt to new situations. Disorders within the 
externalizing spectrum traditionally include diagnosis such as attention-deficit/hyperactivity 
disorder (ADHD), substance use disorder (SUD), oppositional defiant disorder (ODD), conduct 
disorder (CD), and anti-social personality disorder (Krueger and South, 2009). Patients with 
these diagnoses share a variety of facets (e.g. impulsivity, irresponsibility) that relate to 
common behavior such as aggression and substance use (Krueger et al., 2007). In turn, these 
shared characteristics explain the proneness to maladaptive behaviors, such as risk-taking, un-
empathic and delinquent behavior. Although this pattern can be both voluntary as well as 
involuntary, it could fit a pattern of not learning from these ‘mistakes’, or their experiences 
with negative outcomes. The cognitive processing of errors, i.e., the ability to detect and 
respond to a committed error (consciously or not), is an important regulating component in 
adjusting behavior and could thus be crucial for learning processes. It has been proposed 
(Olvet and Hajcak, 2008) that neurophysiological error processing is dysfunctional (i.e., 
reduced) in externalizing disorders and that this dysfunction is an etiological marker for these 
disorders. In this narrative review, we will explore and evaluate the empirical evidence for the 
hypothesis that reduced error processing, reflected as smaller error-related 
electrophysiological brain responses, could be a common biomarker for externalizing 
behavior and disorders. 

Externalizing problems can cause tremendous harm to people displaying these 
behaviors, as well as to their environment and to society at large. Societal costs due to for 
example substance abuse, have been estimated to be more than $700 billion annually in the 
United States alone (Volkow et al., 2016). Treatment of patients with externalizing disorders 
has proven to be challenging, and is characterized by negative prognosis, treatment drop-out, 
high relapse rates, and increased chance of incarceration and recidivism. The origins of these 
externalizing disorders are often already observed in childhood and adolescence and continue 
or even aggravate later in life. Therefore, early identification of individuals at risk for 
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developing an externalizing disorder and/or the identification of patients who are resistant to 
treatment might be helpful when tackling externalizing disorders. Investigating candidate 
biomarkers might be an important step in aiding to identify persons at risk or to further clarify 
pathophysiological mechanisms of these complex disorders. 

There is a growing body of literature in search of candidate biomarkers for 
externalizing disorders and behaviors. There are several definitions for the term ‘biological 
marker’, but biomarkers generally refer to any objective characteristic that can be measured 
accurately, is reproducible and is sensitive and specific enough to be observed in a large 
heterogenous population from patients with a disorder as opposed to healthy individuals 
(Mehta et al., 2020). Neurobiological parameters, such as genes, hormones, skin-conductance, 
heart rate, and event-related potentials (ERP's), are examples of such biomarkers. Biomarker 
and endophenotypic research in the psychiatric and psychological field has greatly contributed 
to diagnostic and prognostic understanding of disorders and has identified provisional neuro-
biological parameters that drive the etiology of disorders (Miller & Rockstroh, 2013). In turn, 
these markers can inform diagnostic tools, treatment options and future research. In the study 
of psychopathology, evidence suggests that ERP's are appropriate neurophysiological 
biomarkers (Hajcak et al., 2019). For example, dysfunction of the prefrontal cortex has been 
found in addiction (in magnetic resonance imaging studies; Goldstein and Volkow, 2011) and a 
diminished P300 in patients with substance abuse (Euser et al., 2012; Houston and Schlienz, 
2018; Iacono and Malone, 2011) or with ADHD (Mehta et al., 2020). We can learn from the 
advances made in research on other neurophysiological biomarkers to pinpoint us what still 
needs to be done, such as investigating the role of genetic markers modulating error 
processing (e.g. Beste et al., 2010; Monoach & Agam, 2013) or investigating whether ERP's can 
be an index for behavioral change in treatment settings (Houston & Schlienz, 2018). In this 
review, we will focus on two response-locked EEG components as candidate 
electrophysiological biomarkers for error processing: the error-related negativity (ERN or Ne, 
Gehring et al., 1993, 2018; Falkenstein et al., 1991) and error positivity (Pe, Arbel and Donchin, 
2009; Falkenstein et al., 1991; Overbeek et al., 2005). Here, we will not address behavioral 
performance nor other neurophysiological markers such as time-frequency theta or MRI 
measures and other behavioral related indices, such as reward processing. Where the ERN is 
an index for monitoring action outcome, the Pe can reflect error awareness and the more 
motivational significance of an error. Both ERP's serve as mechanistic markers for behavior 
adaptation. Research focusing on ERN and to a lesser extent on Pe, have revealed associations 
with psychological conditions. Previous reviews and meta-analyses (e. g., Gilian et al., 2017; 
Moser et al., 2016; Pasion and Barbosa, 2019; Riesel, 2019; Riesel et al., 2019), found that error 
processing can be affected in patients with internalizing conditions such as anxiety disorder 
and obsessive compulsive disorder, often evidenced by increased ERN potentials in patients 
compared to healthy controls. In the field of major depression disorder, inconsistencies of 
error processing effects still need to be resolved (Gilian et al., 2017). For instance, error related 
brain activity did not differ between healthy subjects and major depression patients in the 
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study of Schrijvers et al. (2009) or was blunted in the study of Weinberg et al. (2016), yet ERN 
was related to symptom severity in patients in treatment of their depression (Schrijvers et al., 
2009). In other studies, patients with depression disorder were more sensitive to error making 
reflected by an enhanced ERN compared to controls (Chi & Deldin, 2007; Moran et al., 2017). 
Similarly, the ERN seems to be a suitable biomarker for anxiety in children and adolescents 
(Hanna et al., 2020; Meyer, 2017). 

This narrative review will not provide a systematic overview of ERN and Pe studies in 
externalizing disorders. Instead, we take a step back from previous findings and discuss the 
current state of the art for the notion that reduced ERN and Pe are neurophysiological 
biomarkers for externalizing disorders by answering the following questions: 1) What is the 
evidence that the ERN/Pe is reduced in externalizing populations? 2) Can a reduced ERN/Pe be 
a predictor of externalizing disorders? 3) Are there individual differences in ERN/Pe 
amplitudes within externalizing disorder populations, and what do these individual differences 
indicate? 4) Can the ERN/Pe be indicative of treatment trajectories? 5) Can error processing be 
improved by targeted interventions? 

1) What is the evidence that the ERN/Pe is reduced in externalizing populations?  

To investigate biomarkers is to explore deficits or sensitivities in comparing patient 
samples and healthy individuals. There are several case-control studies showing that ERN and 
Pe are reduced among externalizing populations (e.g., Brazil et al., 2009; Marquardt et al., 2018; 
Morie et al., 2014). In these studies, the typical design is to contrast the amplitude of the ERP's, 
measured by a typical cognitive task such as the Eriksen Flanker or Go-noGo task, between the 
clinical and control groups. The robustness of the reduced ERN and Pe in externalizing 
populations has been very recently confirmed by two meta-analyses compiling case-control 
studies (Lutz et al., 2021; Pasion & Barbosa, 2019). The meta-analysis of Pasion and Barbosa 
(2019) found an overall effect size of g = -0.65 (based on 32 ERN studies, 44 effect sizes, n = 
1921), where a negative g indicates a decreased amplitude for the clinical/subclinical group. 
Similarly, Lutz et al. (2021) found a small to medium effect for the ERN and Pe, observing a 
decreased amplitude for the clinical/subclinical group when compared to healthy controls. 
These studies provide the initial evidence for reduced ERN and Pe in specific subgroups within 
the externalizing spectrum, i.e., substance use disorder, ADHD and personality disorders, as 
well as in individuals with subclinical levels of externalizing behavioral problems (e.g., 
symptoms of aggression, psychopathy, and impulsivity, Hall et al., 2007; Zijlmans et al., 2019). 
Also, in the two meta-analyses, several important moderators, such as ERN peak scoring, type 
of diagnosis, disorder severity, task and presence of comorbidity and performance feedback 
and age, were tested to elucidate on the heterogeneity of the data. Although these meta-
analyses differ in inclusion criteria and approach, the results of the meta-analyses highlight 
that performance monitoring processes are indeed compromised in individuals on the 
externalizing spectrum. This is in correspondence with results from disorder-specific 
systematic reviews on error processing, such as the meta-analysis of Geburek et al. (2013) and 
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Kaiser et al. (2020) in ADHD and the systematic review of Luijten et al. (2014) on substance use 
disorders. In sum, evidence is building to support the hypothesis that reduced error 
processing, indexed by the ERN and Pe, is present in externalizing disorders and could indeed 
be considered a suitable biomarker. When gathering the evidence for the ERN and Pe as a 
neuro-biomarker in the externalizing spectrum, we have to consider possible moderators, that 
are for instance population or research related. When looking at the patients with externalizing 
disorder, sex is a possible moderator. In healthy samples, performance monitoring at a 
behavioral and neurophysiological level is moderated by sex (Fischer et al., 2016; Hill et al., 
2018; Larson et al., 2011; Li et al., 2009). That is, it appears that men show more error related 
activity than females (Fischer et al., 2016; Hill et al., 2018) and that women show different 
activation and deactivation patterns of the brain than men (Li et al., 2009). This could be due to 
sex related morphometric differences of the brain, e.g. a larger anterior cingulate cortex (ACC) 
in men (Ruigrok et al., 2014). It is known that disorders in the externalizing spectrum are more 
prevalent in males (Becker & Hu, 2008; Eaton et al., 2012; Krueger and South, 2009) which is 
reflected in the unbalanced sampling of the (sub)clinical participants in error processing 
studies. Including participants in studies of both sexes appears to be challenging, making it not 
yet possible to draw solid conclusions when systematically investigating error processing 
deficits between male and female patients, as Kaiser et al. (2020) rightfully discuss in their ERP 
meta-analysis in ADHD. Already, there are indications that error processing is affected 
differently for males than females in externalizing samples (for psychopathy see Efferson & 
Glenn, 2018; in internet gaming disorder; Dong et al., 2018; for food addiction see Hsu et al., 
2017). For instance, when predicting cocaine relapse and early relapse time, a reduced activity 
in the dACC and thalamus was indicative for females, whereas the reduced activity in the dACC 
(dorsal anterior cingulate cortex) and left insula was indicative for males (Luo et al., 2013). 
More extensive research with this moderator is warranted to pinpoint which brain area and 
activity is affected for males or females in particular, and whether this is disorder specific or 
generalizable for the externalizing spectrum. Another possible moderator that should be taken 
into account when studying error processing pertains to methodological choices in ERP 
(pre)processing. Recently, Klawohn et al. (2020) investigated the effect of different 
quantification ERP methods, and although there are differences, most methods had acceptable 
to good internal consistencies. Indeed, there are several important moderators in error 
processing studies that affect the internal consistencies of studies (Sandre et al., 2020), 
carefully investigated in the meta-analysis of Clayson (2020). Choices relating to EEG 
referencing, the scoring procedure, electrode (cluster), (ocular) artifact rejection and number 
of trials for ERP calculation, can influence the internal consistency of the ERN (Clayson, 2020). 
An adequate solution for this moderation issue in EEG research is the disclosure of hypotheses, 
data collection, processing and analyses through pre-registration (Paul et al., 2021) and open 
science practices, which not only allows for reproducibility and transparency but provides a 
control mechanism for these possible moderators. 
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In order to further validate whether neurophysiological markers of error processing 
are suitable as biomarkers of externalizing disorders, we need to better understand how 
defiant error-related brain activity acts as an underlying mechanism in these disorders. The 
functional significance of error processing relies on several theories or hypotheses that might 
be complementary and exclusive at the same time. The mismatch, reinforcement and learning 
based, conflict monitoring and motivational significance theory, as outlined in Olvet and 
Hajcak (2008) and Weinberg et al. (2012) for ERN and the affective-processing, behavior-
adaptation and error awareness hypotheses, as discussed in Overbeek et al. (2005) for Pe, could 
help us to understand the underlying mechanisms for the disruptive behavior of patients with 
externalizing disorders. Briefly, these hypotheses attempt to explain how errors are (not) 
processed and evaluated by the brain, how errors elicit learning behavior which in turn leads 
to adjustment in behavior. When this system does not adequately work, error processing is 
affected and leads to the inability to adjust disadvantageous behavior, which is often observed 
in individuals with externalizing disorders. However, it is unclear how these hypotheses 
explain day to day behavior that we see in patients with externalizing disorders or, how we 
could use these hypotheses to improve error processing deficits (e.g. training performance 
monitoring using feedback or error awareness training). 

A continuation of exploring the neural network behind performance monitoring is 
encouraged (Wessel, 2012; Wessel et al., 2012). For instance, an insufficiently working salience 
network of the brain, indicated by hypoactivity of the insula or ACC (as described in Ham et al., 
2013) can explain the performance deficits seen in externalizing disorders. Also, the interplay 
of ACC and other brain regions on functional and structural level contributing to regulating 
behavior, cannot be omitted. For instance, distinct activation patterns of the insula, rostralACC 
and the dorsolateral prefrontal cortex in patients with cocaine addiction and intermittent 
explosive disorder (Moeller et al., 2014a, 2014b) explained the behavior in the performance 
tasks. 

So far, we interpreted reduced error related brain activity as an indicator of the 
inability to adjust behavior to avoid future errors, which in turn are related to symptoms (e.g. 
the continuation of substance abuse: Crane et al., 2018; Easdon et al., 2005; Franken et al., 2007; 
Hajcak, 2012; Luijten et al., 2011; Sokhadze et al., 2008). The late component of error 
processing, Pe, has only recently been subject of experimental studies (e.g., Di Gregorio et al., 
2018), and therefore less is known about the functional significance of the Pe in externalizing 
disorders. In the study of Rosburg et al. (2018), it has been proposed that a reduced Pe could 
reflect the reduced awareness of the committed errors in child sexual offenders, which in turn 
could contribute to their delinquent behavior. A reduction in the recognition (that is the 
awareness) of, or the motivational significance of an error, might explain why individuals with 
externalizing disorders are less inclined to change their behavior because of that error. Clearly, 
more studies are needed to clarify the role of the reduced ERN and Pe in externalizing 
conditions. One interesting possibility, that has become available with mobile EEG and mobile 
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cognitive assessments, is the investigation of error-processing in ‘daily life’, particularly in 
relation to externalizing behaviors. With this method, we could gain knowledge about the 
significance of error processing deficits in daily cognitive processes. 

Another outstanding question is whether the ERN and Pe are suitable biomarkers for 
the externalizing spectrum or whether it is specific to certain externalizing disorders or 
problem behaviors. There is a substantial number of studies providing evidence that error 
processing is affected in individuals with ADHD or in substance use disorder. However, other 
externalizing conditions have been understudied, such as anti-social personality disorder or 
psychopathy (Vallet et al., 2021). A few incidental case-control studies have indicated that error 
processing is reduced in behavioral addictions, in for example computer gaming addiction (for 
the ERN, Littel et al., 2012) or internet gaming addiction (Park et al., 2020; Zhou et al., 2013), 
and food addiction (Franken et al., 2018). Taken from these four studies, the participants with 
addictive behavior made more errors, were more impulsive, and showed decreased ERN, 
indicating to reduced reduce performance monitoring. Although these results are in 
accordance with results from substance addiction, we cannot yet draw firm conclusions based 
on four studies. Yet, we have reasons to believe that future studies will find error processing 
deficits in patients with behavioral addiction as brain studies examining the functional activity, 
structure, and connectivity already have shown that the ACC or orbitofrontal cortex and 
connectivity with the insula are affected (for instance in internet gaming disorder: Dong et al., 
2015; Ko et al., 2014; Lee et al., 2018; Xing et al., 2014; Zhou et al., 2011). More research is 
needed on both ERN and Pe in diverse externalizing populations to explore whether the two 
ERP's are a general biomarker for externalizing disorders, or only related to specific 
externalizing behaviors. Another outstanding and relevant issue is the role of error processing 
in explaining comorbidity as externalizing and internalizing conditions can co-occur (Krueger 
& Markon, 2006). Since externalizing disorders are often characterized by a decreased ERN and 
internalizing disorders by an increased ERN, it is interesting to investigate how error 
processing plays a role in comorbid conditions (as for example investigated in the study of 
Schellekens et al., 2010 and Gorka et al., 2016). Although it has been proposed that error 
processing can be considered as a transdiagnostic marker which is also relevant for individuals 
presenting with comorbid disorders (Ladouceur, 2016; Pasion & Barbosa, 2019; Weinberg et al., 
2015), the direction of the association (reduced vs. increased) is one important aspect that 
needs to be examined. When trying to understand the comorbidity issue, the p factor or a 
generalized psychopathology factor might offer insight (Caspi et al., 2013; Caspi & Moffitt, 
2018). The p factor, incorporating the internalizing and externalizing and thought 
disorders/psychotic experiences allows for the co-occurrence of problems from all disorders, 
which is applicable in our discussion here. However, until now researchers have been devoted 
to test such nosology in large populations, and a few studies have validated this model with 
global executive functioning in children (Bloemen et al., 2018; Martel et al., 2017; Shiels et al., 
2019). We can only speculate how error processing or cognitive control fits in the general 
factor. The error processing effects found in both internalizing and externalizing disorders 
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support the fundamental idea of the bifactor or hierarchical factor, proposed by Caspi and 
Moffitt (2018). It is therefore important that error processing components are incorporated in 
the Research Domain Criteria of the NIMH (as discussed in Weinberg et al., 2015). For now, 
experimental studies are needed to investigate the role of error processing in the etiology of 
either externalizing or internalizing disorders as well as comorbidity between these disorders 
by controlling for both symptoms in terms of onset, severity, and genetic predispositions. 

2) Can a reduced ERN/Pe be a predictor of externalizing disorders?  

In order to be able to determine whether reductions of the ERN/Pe can be considered 
an etiological biomarker for externalizing disorders, the role of error processing should be 
studied at an early age. When establishing deficits in adulthood, the notion that error 
processing was already affected in childhood, should be tested. Several cross-sectional or case-
control reports have found reduced error processing in children with elevated subclinical 
levels of externalizing behavioral problems and children with clinical externalizing disorders 
(e.g., Burgio-Murphy et al., 2007; Kessel et al., 2016; Meyer & Klein, 2018; Moadab et al., 2010; 
Stieben et al., 2007) and ADHD (Groen et al., 2008; Senderecka et al., 2012). The next step is to 
test these associations in longitudinal designs in children and adolescents, as illustrated by the 
review study of Meyer (2017) in anxiety. These designs should keep in mind the normal 
trajectory of error processing indices (such as the increase of the ERN over time found in the 
reviews of Lo, 2018, and Tamnes et al., 2013) but are essential to determine whether error 
processing could be a predictor for externalizing problems. 

Case-control studies do not provide information about the causal role of error 
processing deficits in externalizing disorders. It has been proposed that error processing 
deficits could indeed be one of the causal factors of externalizing disorders. To study this, the 
level of error processing in at-risk samples (that is children, family members, or adults that 
have an increased chance for developing externalizing problems due to their parental 
conditions or exposure) can indicate a possible causal effect. The study of Euser et al. (2013) is 
an example of such a study, where the hypothesis that error processing is an antecedent and 
reflects biological predisposition to the disorder (in this case SUD). High risk adolescents, who 
had a parent undergoing treatment for SUD showed smaller ERN amplitudes than normal risks 
(healthy controls). In this design, one can find evidence whether the deficits found in error 
processing contribute to the disorder that is diagnosed at a later stage in their lives. This idea 
has been studied previously with other candidate neurophysiological markers such as the 
reduced P3 (Euser et al., 2012; Iacono et al., 2002) within the externalizing spectrum. One the 
other hand, it is also conceivable that error processing deficits could be a consequence of 
psychopathology. This implies that error processing deficits are not yet detectable at the 
beginning of a disorder, but rather a result of the disorder. This could also clarify why certain 
patients show a negative prognosis as opposed to others. This alternative hypothesis seems to 
be particularly relevant in substance use disorders, as it is known that the prolonged use of 
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substances has detrimental effects on the brain and cognitive functions (Goldstein & Volkow, 
2002, 2011; Leshner, 2003). 

To conclude, there is some evidence of early error processing deficits in children in 
the externalizing spectrum. It remains unclear whether error processing deficits can be 
considered a vulnerability or consequence of developing externalizing disorders. Since 
experimental studies addressing causality issues are obviously unethical, more prospective 
longitudinal cohort studies focused on the ERN and Pe and the development of externalizing 
problems over time among children in the general population are needed in order to gain 
insight in developmental aspects and their causal role in problem behaviors. 

3) Are there individual differences in ERN/Pe amplitudes within externalizing 
disorder populations, and what do these individual differences indicate?  

Both meta-analyses mentioned previously (Lutz et al., 2021; Pasion & Barbosa, 2019) 
have shown that there is substantial heterogeneity within clinical groups, indicating that error 
processing deficits may not be evident for all patients within a clinical disorder and are present 
in various degrees. There are several possible explanations for the observed variation in the 
error processing correlates, such as individual differences, presence of comorbidity, severity 
of symptomatology. First, variability in ERN could be due to individual differences in several 
domains. For instance, there is evidence that the individual levels of cognitive control in 
patients with ADHD (Meyer & Hajcak, 2019) and the individual levels of the trait defense 
reactivity (Weinberg et al., 2012) can modulate the ERN. Several other studies have shed light 
on additional characteristics that modulate ERN/Pe, such as working memory performance 
(Miller et al., 2012), fearfulness in toddlerhood (Brooker & Buss, 2014), sensitivity towards 
rewards and punishment (Boksem et al., 2006; Dikman & Allen, 2000), personality or 
externalizing traits (Pailing & Segalowitz, 2004; McDonald et al., 2021) and behavioral 
inhibition (Amodio et al., 2007). Also, it is important to mention that the role of individual 
differences needs to be studied in large samples. Small sample sizes, typically used in these 
studies, overestimate effect sizes and have low reproducibility (Button et al., 2013; Larson & 
Carbine, 2017). An example of this is point is illustrated in the study of Bernoster et al. (2019). 
In this larger scale study, a clear link between ERN and impulsivity was not found, despite 
previous reports of this association in smaller scale experiments. The role of individual 
differences in error processing clearly merits further investigation as it could explain the 
heterogeneity of the error processing deficits. Another possible explanation for the variation 
within clinical groups is the presence of comorbid internalizing problems, that often co-occur 
in for example substance use disorders (Franken et al., 2017; Olvet & Hajcak, 2008; Smith et al., 
2017). Or, variability in error processing deficits could be due to the severity of the 
externalizing symptoms. Both relate to a more dimensional approach of externalizing 
spectrum, as suggested by Krueger et al. (2007). The high or low levels of externalizing and 
comorbid problems (irrespective of a particular disorder) are related to more or less 
pronounced error processing and other executive functioning deficits, can explain possible 
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variance observed. In turn, studying this link can be insightful for the global functioning of 
patients. Already, studies have examined the degree of symptomatology and its association 
with the variation in ERN or Pe. For instance, a smaller ERN has been related to more heavy 
heroin use (Chen et al., 2013), alcohol use (Campanella et al., 2017; Smith & Mattick, 2013), and 
nicotine dependence (Luijten et al., 2011). To investigate the comorbidity, symptom severity 
and global functioning hypotheses, experiments could use ecological momentary assessment 
applications to asses error processing in combination with comorbid symptoms, symptom 
severity or functioning ratings in patients. This line of research should be continued and 
include the Pe component, in order to examine whether and how error processing is related to 
individual differences, symptom severity, or global functioning in externalizing patients. This 
knowledge could aid in predicting prognosis of patients and give insight in treatment success.  

4) Can the ERN/Pe be indicative of treatment trajectories?  

In line with the previous paragraph, discussing the ERN or Pe as an index of symptom 
severity, error processing could be used as an indicator of status, relapse or treatment success 
in externalizing disorders (Gorka et al., 2019; Marhe et al., 2013, Steele et al., 2014, and at trend 
level in Luijten et al., 2016). The study of Gorka et al. (2019) showed that the ERN can possibly 
be related to pathological stages of patients with alcohol use disorder. In other words, the 
magnitude of the ERN could differentiate between current, remitted and at-risk in patients 
with alcohol use disorder. Similarly, although at trend levels, Pe and ERN were related to 
smoking relapse and resumption in Luijten et al. (2016). Both these studies give insights in how 
error processing could be directly related to recovery trajectories in addiction disorders. When 
investigating treatment success, the results of Marhe et al. (2013) and Steele et al. (2014) 
showed how error processing deficits could be predictive of treatment outcome, by relating 
error related brain activity to later treatment success. Moreover, the results of Padilla et al. 
(2011), Schlienz et al. (2013), and Schlienz and Hawk (2017) suggest that ERN is very sensitive to 
the cessation of alcohol in patients with alcohol disorder. Indeed, distinct activation patterns 
during error processing of dACC, thalamus, and insula in cognitive processing are found 
during abstinence in other addiction disorders, such as cocaine-dependency patients, implying 
that indicators of brain functionality are of predictive value for drug relapse (Connolly et al., 
2012; Luo et al., 2013). Indications of the predictive value of error processing for treatment 
outcome are also found in research in forensic settings. For example, Steele et al. (2015) found 
that Pe could differentiate between incarcerated males who were or were not subsequently 
rearrested. In this prospective study, the error related brain activity of adult men was related to 
later rearrests, information that was gathered in a follow-up. Although several studies show 
that error processing is potentially predictive of treatment outcome, more evidence is needed 
to determine its potential in other externalizing disorders. 

5) Can error processing be improved by targeted interventions? 
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At the moment, the improvement of (aspects of) cognitive control, such as error 
processing, is one of the crucial targets in many studies aiming to treat externalizing disorders. 
However, in practice it seems rather difficult to improve cognitive control. With exemption of 
one study (Schoenberg et al., 2014), we are not aware of studies showing that certain 
treatments can improve error-processing (reflected by improvements in ERN/Pe amplitudes 
post interventions) specifically, nor that improvements in error processing result in 
adaptations in behavior. Having said this, there have been successful attempts in the broad 
area of self-control (Inzlicht et al., 2014) that provide important clues on how to continue the 
search for effective interventions to improve error processing. Broadly, these studies focus on 
three types of interventions: cognitive-behavioral training, brain stimulation (Bellaïche et al., 
2013; Carmi et al., 2018; Verveer et al., 2021), and meditation techniques (Slagter et al., 2011). 
Cognitive-behavioral therapy could address elements that are related to cognitive processes. 
An interesting attempt to test this idea is the study of Schoenberg et al. (2014), where cognitive 
therapy addressed cognitive flexibility, attention, and behavioral regulation. In this study, they 
found that mindfulness-based cognitive therapy elevated Pe in adult patients with ADHD. 
Concerning brain stimulation, current randomized control trials and experiments are 
exploring the possibility of using brain stimulation to modify cognitive control and 
neurofeedback to adjust performance monitoring. Non-invasive neurostimulation using 
transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) can 
alter the activity of targeted brain regions, associated with error processing, such as the ACC. 
Although research of the use of neurostimulation in externalizing disorders is accumulating 
and promising (for drug addiction: Song et al., 2019; in ADHD: Soltaninejad et al., 2019), very 
few studies investigate its effects on cognitive control and even less studies investigate error 
processing specifically. In healthy volunteers, successful attempts to modulate error 
processing through tDCS have been reported (Bellaïche et al., 2013). There are preliminary 
indications that TMS treatment is related to changes in ERN in patients with obsession-
compulsive disorder (e.g., Carmi et al., 2018). However, in patients with cocaine addiction that 
underwent tDCS treatment (Verveer et al., 2021), no changes in the ERN nor craving were 
found. Last, meditation techniques are another promising avenue to improve cognitive 
control. Researchers are currently exploring its effects in healthy volunteers (Andreu et al., 
2019; Lin et al., 2019; Pozuelos et al., 2019; Quaglia et al., 2019; Saunders et al., 2016; Slagter et 
al., 2011; Teper et al., 2013) and it seems too early to speculate about the effectiveness in 
general and for externalizing disorders in particular. 

At the moment there are no proven interventions that could indicate that error 
processing could be improved in patients with externalizing disorders, but cognitive training, 
particularly like the study of Schoenberg et al. (2014), brain stimulation, and meditation 
techniques are certainly worth exploring, as they can address cognitive control elements 
shown in studies with healthy samples. Despite the limitation that improving error processing 
will only alleviate some of the problems seen in patients with externalizing disorders, future 
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research should investigate whether improving error processing in turn leads to adapting their 
behavior. 

Conclusion and future directions 

Our narrative review shows that error processing and specifically a reduced ERN and 
Pe are associated with externalizing symptoms, and that empirical evidence is building that 
deficits in error processing measured at neurophysiological level might be a suitable 
biomarkers for externalizing conditions. However, many questions remain unanswered. We 
address several key themes in Table 1, where we give an overview of preliminary evidence and 
recommendations for future research directions. In this review, we focused on the 
neurophysiological indices of error processing (ERN and Pe), leaving the discussion on the 
significance of behavioral indices of error processing untouched. Also, a related ERP, the P300, 
shares important variance with ERN/Pe, and we would like to shortly touch upon these topics. 

Concerning the functional significance of the ERP measures, there are some 
indications that ERN or Pe is related to task behavior and behavioral adjustment. For instance, 
the Pe was correlated with post-error slowing (PES; Hajcak et al., 2003; Nieuwenhuis et al., 
2001). Additionally, the ERN is associated with post-error accuracy, when mediated by post-
error slowing (Beatty et al., 2020). Although there is no consensus yet, several studies (e.g. 
Cavanagh et al., 2009; Kalfaoğlu et al., 2018) have found relationships between ERN and post-
error slowing, indicating that ERN is related to task-related behavior. The authors in Beatty et 
al. (2020) carefully laid out possible explanations for the inconsistencies around the 
relationship between behavior and ERN. In addition, it is not clear to what degree the 
behavioral performance during error processing tasks is affected in patients with externalizing 
disorders. For example, post-error slowing appears to be affected in patients with ADHD 
(Balogh & Czobor, 2014) and cocaine use disorder (Franken et al., 2007). On the other hand, 
there are reports showing a distinct pattern of behavior. For instance, the externalization 
groups in the study of Gorka et al. (2019) not make more errors in cognitive tasks, nor do they 
take longer (evidenced in reaction times) in pressing the correct buttons when compared to 
controls, as in the study of Zhang et al. (2009) in children with ADHD. Studying the significance 
of behavioral performance during error processing as well as the association of the behavior 
with the neurophysiological indices is encouraged. Elucidating on this could answer another 
interesting question: how ecological valid are our lab measures of error-processing when 
translating to real-life behavior? We recommend researchers to endeavor in elucidating this 
through e.g., ecological momentary assessment and virtual reality techniques, in order to 
better test these hypotheses. 
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Table 1.  
Table with key formulations from this review, a short overview of evidence and suggestion for future directions  
 
Key formulations  Preliminary evidence*  Future research directions  
Psychometric 
characteristics of the 
error- related negativity 
are clear  

Sandre et al., (2020)  
Klawohn et al., (2020)  
Riesel et al., (2013)  
Rietdijk et al., (2014)  
Clayson (2020)  

Report and examine the role of 
moderators, such as gender and 
methodological decisions, in ERN/Pe 
experiments.  

Error-related negativity 
and error positivity is 
reduced in patients with 
externalizing disorders  

Lutz et al., (submitted)  
Pasion & Barbosa (2019)  
Kaiser et al., (in ADHD: 2020)  
Vallet et al., (2021)  

• Extend knowledge of the underlying 
theories for ERN and functional 
hypotheses of Pe  

• Investigate whether error processing 
is affected in behavioral addiction  

Cause or effect of error 
processing in 
psychopathology unclear   

Meyer et al., (2017)  
Euser et al., (2013)  

Investigating the developmental path of 
error processing in relation to 
psychopathology through longitudinal 
and cross-lagged model designs  

Error processing is related 
to individual differences 
in the cognitive and 
personality domains, 
disorder severity and 
comorbidity  

Cognitive/personality domains:  
Pailing and Segalowitz (2014)  
  
Reward/Punishment sensitivity:  
Boksem et al., (2006)  
  
Symptom severity:  
Campanell et al., (2017)  
  
Comoribity:  
Franken et al., (2017)  

Studying moderating measures to 
explain heterogeneity in disorders in 
larger samples  
• Symptom severity  
• Relation to comorbidity   
• Traits and personality  
• Genes and hormones  
• Other cognitive measures (e.g. 

working memory, attentional bias)  
• Error processing in daily life; using 

ecological momentary assessments 
tools  

Error processing could be 
used as an indicator of 
status, relapse or 
treatment success  

Gorka et al., (2019)   
Marhe et al., (2013)  
Steele et al., (2014)  
Luo et al., (2013)  
Steele et al. (2015)  

Prospective studies using 
neuroprediction: examining the 
predictive value of error processing for 
treatment trajectory and 
relapse/rearrests rates  

Unclear whether and how 
we can train or stimulate 
performance monitoring 
to reduce error processing 
deficits   

Schoenberg et al., (2014)  
Bellaïche et al., (2013)  
Verveer et al., (2020)  

Through training programs, stimulation 
techniques or new experimental 
paradigms, can we improve error 
processing deficits?  
  

*The authors acknowledge that more studies than mentioned here support the key formulations 
drawn.  
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The reduced P300 has been considered a viable predictor for externalizing disorders 
(see e.g., Patrick et al., 2006). There are however obvious paradigm/component related 
differences with the reduced ERN/Pe, such as the polarity, latency (ERN) and onset. The latter 
characteristic differentiates the ERP's the most: the ERN/Pe is triggered by errors (response 
triggered) whereas the P300 is elicited by a scope of stimuli: affective, oddball etc.. Hence, the 
P300 reflects broader processes of decision making, leaving the unique feature of ERN and Pe 
to be specific error processing ERP's. Together these ERP's, among other ERP's such as N200, 
predict neurocognitive processes and behavior for externalizing disorders. Most studies in this 
research area consist of relatively small case control samples, in predominantly ADHD and 
SUD which limits our knowledge on the actual role of error processing. It should be examined 
whether the variation in error processing found within externalizing disorders is related to 
differences individuals and their psychopathology. Case-control studies cannot solve questions 
such as ‘is reduced cognitive control a cause or consequence of externalizing disorders?’ and 
‘can we improve error processing in order to help individuals with externalizing problems?’. 
Future studies should focus on developmental processes in order to clarify a possible causal 
role, by using longitudinal designs and by exploring the effect of error processing on daily 
behavior. Also, more studies on the clinical relevance and development of intervention 
programs to improve error processing in externalizing disorders are needed. We believe that 
multi-method studies on error processing that are embedded within cognitive neuroscience 
(MRI, EEG), epidemiology (large prospective cohort study), and the emerging area of ecological 
momentary assessments (EMA), will be a fruitful new avenue to further explore mechanisms, 
treatment, and prevention of externalizing disorders. 
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Chapter 4 

 

 

Developmental Trajectory of Flanker Performance and its Link to Problem Behavior in 7-to 
12-year-old Children 

 

 

This chapter is submitted as:  

Lutz M. C., Kok, R., Koot, S., Van Lier, P. A. C., Buil, M., & Franken, I. H. A. (submitted). 
Developmental trajectory of flanker performance and its link to problem behavior in 7-to 12-
year-old children. Retrieved from https://doi.org/10.31234/osf.io/fj62k   
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Abstract 

This study investigates both the developmental trajectory of flanker task performance 
in children and the association with the development of teacher-reported problem behavior. 
Five waves of flanker performance and behavioral and emotional problems were drawn from a 
large longitudinal sample of elementary school children in the Netherlands (1424 children, 
ages 7 to 12 years). Latent growth curve modeling (LGM) identified a piecewise decrease in 
flanker response time: the steepest decline was found from 7 to 9 years old. Boys had lower 
levels of response time at age 7 than girls. Children showed a linear decrease in behavioral and 
emotional problems over time. Parallel LGMs revealed that lower levels of initial flanker 
response time were associated with a stronger decrease in anxiety problems and oppositional 
defiant problem behavior. A faster decline in response time was associated with a faster 
decline in depression problems, attention deficit hyperactivity-, and oppositional defiant-
related behavior. Results offer insight into the normative development of performance 
monitoring in childhood and the link between behavioral measures of performance 
monitoring and behavioral and emotional problems.  

Keywords: flanker, conflict and performance monitoring, children, developmental 
psychopathology, behavioral and emotional problems 
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Developmental Trajectory of Flanker Performance and its Link to Problem Behavior in 7-to 
12-year-old Children 

 
Task performance is often an overlooked marker of performance monitoring in 

neurophysiological studies, even though it has proven a valuable integrative component when 
understanding the interplay between the brain and behavior (Sandre et al., 2020; Schroder & 
Moser, 2014). Performance monitoring, which includes error and conflict monitoring, is a 
higher-order cognitive function ensuring the ability to reflect on one's actions, detect errors 
and initiate behavior adjustment (Gehring, Goss, Coles, Meyer, & Donchin, 1993). Like many 
cognitive abilities, conflict and error monitoring change throughout development (Luna, 
Marek, Larsen, Tervo-Clemmens, & Chahal, 2015). Differences in the ability to monitor 
performance have been linked to psychopathology during childhood and adulthood (Meyer, & 
Hajcak, 2019; Olvet & Hajcak, 2008). However, most studies investigating performance 
monitoring are cross-sectional, making it impossible to study developmental aspects. It is 
unclear how flanker performance can be related to the development of behavioral and 
emotional problems in childhood. Therefore, the current study has two goals: 1) investigate the 
development of child performance on a modified flanker task and 2) test whether the 
development of flanker performance is associated with the development of behavioral and 
emotional problems in a sample of 7-to 12-years old children attending mainstream elementary 
schools.  

Both conflict and error monitoring can be measured through several cognitive 
paradigms, with the Eriksen flanker task being one of the most used in the field (Eriksen & 
Eriksen, 1974). The task is simple in its design and instruction, and the cues are non-verbal and 
easily adaptable to accommodate participants’ age or experimental manipulation. It is a forced-
choice paradigm in which participants are presented with a string of stimuli and instructed to 
locate the target symbol accurately and as fast as possible, ignoring the other irrelevant (non-
target) symbols (flankers). There are two trial types, congruent and incongruent, where the 
congruent trial has the same flankers (e.g.,> > > > >), whereas the incongruent contains 
conflicting flankers (e.g.,> > < > >). This conflicting information requires more complex 
cognitive processing and is quantified by longer response times on incongruent trials 
accompanied by more commission errors (Shenhav, Botvinick, & Cohen, 2013).  

According to conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 
2001), dealing with incongruency relies on effectively detecting competing or interfering 
response options when planning/executing a goal-directed action. Addressing this conflict 
monitoring system directs attention to current behavior (identification and evaluation of 
errors) and motivates the adjustment of future behavior (correcting), ultimately reinforcing 
learning. Conflict monitoring theory is well suited to explain the development of performance 
monitoring and how behavior and neural maturation are related to cognitive control 
development (Lo, 2018). Tasks that evoke conflict and error monitoring, such as the flanker 
task, are associated with specific activation of the anterior cingulate cortex (ACC; Richard 
Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2003; van Veen & Carter, 2002b). Indeed, 
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there is a link between level of ACC activity and ongoing task behavior (e.g., Ordaz, Foran, 
Velanova, & Luna, 2013; Sheth et al., 2012). Although conflict monitoring theory explains 
behavior in performance monitoring tasks (see Ullsperger et al., 2014), conflict and error 
monitoring processes are both active during task performance, especially in the brain. This is 
why other theories, such as the reinforcement learning theory (Holroyd & Coles, 2002) or the 
adaptive orienting theory of error processing (Wessel, 2018), provide valid theoretical 
frameworks to explain adaptation behavior following performance monitoring.  

The behavioral indices of the flanker task allow for the investigation of performance 
monitoring on a behavioral level. Using the response times and accuracy per trial type 
(congruent vs. incongruent), here referred to as the congruency effect, can be an index of 
conflict monitoring (Botvinick et al., 2001). Another measure that is related to performance 
monitoring is the speed-accuracy trade-off (SAT; Rabbitt, 1966). Speed-accuracy trade-off (SAT) 
is the inverse relationship between the speed of response and response accuracy, where an 
increase in the pace of responding is often at the expense of correctness (Heitz, 2014; Ranger, 
Kuhn, & Pohl, 2021). According to the most reported SAT score (the inverse efficiency score, 
Townsend & Ashby, 1983), a larger SAT is observed when an individual is slower in response 
time while making few errors. A small SAT reflects the focus on faster response time while 
making more errors (Liesefeld & Janczyk, 2019). Post-error slowing (PES) is a behavioral index 
of error monitoring, defined as the slowing of response time on a post-error trial. While 
different accounts explain the PES phenomenon (Danielmeier & Ullsperger, 2011; Dutilh et al., 
2012; Rueppel, Mannella, Fitzgerald, & Schroder, 2022), PES generally reflects the behavior 
adjustment mechanism following error-making and serves as a measure of cognitive control. 
Both SAT and PES capture individuals' 'strategy' during task performance. Changes in these 
parameters are the result of adequate performance monitoring, as they are needed to optimize 
overall performance and the avoidance of future errors. In turn, this ability to adapt behavior 
after wrongful decision-making is a crucial mechanism for problematic behavior, often 
observed in different psychological disorders.  

Normative performance monitoring development during childhood facilitates the 
fine-tuning of the abilities to focus attention on relevant stimuli, evaluate wrong decision-
making and self-regulate behavior (Denervaud, Hess, Sander, & Pourtois, 2021; Lo, 2018). This 
is driven by unique changes in the maturation of performance-monitoring brain regions such 
as ACC (Tamnes, Walhovd, Torstveit, Sells, & Fjell, 2013) and contributing neurotransmitter 
systems, that change throughout development (Luna et al., 2015). This is why we expect that 
performance monitoring improves during childhood. Indeed, flanker task performance has 
been associated with children’s age. Cross-sectional studies indicate that older children are in 
general, more accurate and faster than younger children (Buzzell et al., 2017; Checa, 
Castellanos, Abundis-Gutiérrez, & Rueda, 2014; Davies, Segalowitz, & Gavin, 2004; Gavin, Lin, & 
Davies, 2019; Gorday & Meyer, 2018; Overbye et al., 2019). Also, children are slower and 
commit more errors compared to adults (e.g., Santesso, Segalowitz, & Schmidt, 2006; for a 
review, see Hämmerer, Müller, & Li, 2014). There are mixed findings considering PES in 
childhood (Rueppel et al., 2022). Some studies find no age-related changes in PES (Denervaud 
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et al., 2021; Ladouceur et al., 2007; Taylor, Visser, Fueggle, Bellgrove, & Fox, 2018), some 
studies report a developmental decrease in PES (Meyer, Weinberg, Klein, & Hajcak, 2012; 
Smulders, Soetens, & van der Molen, 2016) and others find a developmental increase in PES 
(Hogan, Vargha-Khadem, Kirkham, & Baldeweg, 2005; Overbye et al., 2019). These 
discrepancies could be caused by different forms of calculating PES or experimental designs, 
yet the true meaning of this inconsistency is unknown. Studies usually don't report 
participants' speed-accuracy trade-offs. A noticeable exception is a study of Ladouceur, Dahl, 
and Carter (2007), where the sample of 12-year-old children equally valued speed and accuracy 
during the flanker task performance. Taken together, the above-mentioned studies suggest 
that children improve in response times and accuracy over time. We expect similar task 
performance improvement over time in the current study and will explore PES and SAT across 
7- to 12-year-olds in the current sample. 

Children are vulnerable to developing psychological problems during elementary 
school (Boer et al., 2021). Although there are other developmental markers that play a role in 
the etiology of a disorder, performance monitoring markers have been put forth as important 
neuro-cognitive markers that play a role in the development of emotional and behavioral 
disorders. It is possible that cognitive markers (such as performance monitoring) can be seen 
as a risk for psychopathology, that is, cognitive dysfunction is considered transdiagnostic for 
psychopathology (Abramovitch, Short, & Schweiger, 2021). Yet, well-defined theories that 
explain how behavioral indices of performance monitoring could explain maladaptive 
behavior and, in turn emotional and behavioral problems, are lacking. Research relies on the 
theorical hypotheses that are available to explain neurophysiological indices of performance 
monitoring. For example, according to the defense reactivity trait hypotheses (Weinberg, 
Riesel, & Hajcak, 2012), an error can be considered as a threat to an individual’s safety, and 
therefore errors are considered ‘bad’ and should be avoided (Hajcak & Foti, 2008). Yet, results 
finding an association between anxiety and behavioral indices of performance monitoring are 
mixed (Rueppel et al., 2022; Weinberg, et al., 2012). For instance, Meyer, Weinberg, Klein, and 
Hajcak (2012) found that larger PES and post-error mistakes were more prevalent in children 
with higher anxiety scores. This was not the case in other studies, where there was no link 
between cognitive control and anxiety (Ladouceur et al., 2006; Meyer et al., 2013). In youth 
with major depression disorder diagnosis, no clear association between the response times or 
accuracy rates and depression scores was observed (Ladouceur et al., 2012). However, young 
adults who report high levels of depressive symptoms show worse behavioral indices in 
performance tasks (Compton et al., 2008; Holmes & Pizzagalli, 2007). Several studies show 
associations between behavioral problems and conflict and error monitoring (Balogh & 
Czobor, 2016; Meyer et al., 2012; Woltering, Granic, Lamm, & Lewis, 2011) in children. Meta-
analytic reviews reveal that individuals (predominantly children) with an attention deficit 
hyperactivity disorder (ADHD) show a diminished PES, slower response times, and higher 
error rate than healthy controls (Balogh & Czobor, 2016; Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013). In children with conduct or oppositional problem behavior during childhood, 
studies relating performance monitoring with problem behavior are, to our knowledge, scarce. 
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An exception is the study by Stieben et al. (2007), which showed that 10-year-old children with 
externalizing problems did not show post-error slowing. In the study by Woltering et al. (2011), 
children with high levels of externalizing behavioral problems (based on Child Behavioral 
Checklist scores) were slower in response times than the comparison group of typically 
developing children. Given the scant evidence that performance monitoring could be related to 
problem behavior in children, the studies described here rely on relatively small sample sizes 
and utilized cross-sectional study designs. Therefore, the second aim of the current study is to 
contribute to this body of literature, by exploring the level and development of flanker task 
performance as a predictor of the level and development of anxiety-, depression- related 
behavior and behavioral problems in a large sample of elementary school children followed 
throughout elementary school. This study is one of the first longitudinal investigations 
examining associated changes between behavioral indices of performance monitoring and 
behavioral and emotional problems throughout childhood. 

A few studies found gender differences in flanker task performance in children (Gavin 
er al., 2019; Torpey, Hajcak, Kim, Kujawa, & Klein, 2012). When controlling for age, boys had a 
higher error rate and faster response time than girls (Gavin et al., 2019). Studies applying other 
performance monitoring tasks in young children (e.g., go/nogo tasks) found that gender was 
associated with response time (Torpey et al., 2012), where girls were slower than boys. In this 
study, we explore gender differences in flanker task performance, as there might be subtle 
differences in the initiation level and growth trajectory due to general sex differences in brain 
morphology and pre-puberal and hormonal changes (Gorday & Meyer, 2018; Ordaz et al., 
2013).  
Current Study 

In the current longitudinal study, we modeled five years of flanker performance 
drawn from a large sample of mainstream elementary school children followed from age 7 to 
12 with the intent to describe flanker performance throughout the elementary school years. 
This unique sample of repeated measures allows us to explore the development of response 
time across childhood. Based on previous research on performance monitoring, we expect that 
children show faster response time as they grow older. Second, we investigate the associated 
change between the level and development of response times with the level and development 
of anxiety and depressive related behavior and behavioral (ADHD-symptoms, oppositional 
defiant and conduct-related) problems. Lastly, we present age-related flanker performance 
measures (accuracy, congruency effects, PES and SAT’s) in this large sample of 7- to 12-year-
olds and explore if there are possible gender differences in flanker task performance during 
these five years as well as gender-specific associations between response times and problem 
behavior.  

Method 
Participants 

The data were drawn from the project 'Happy Children, Happy adolescents?', a 
longitudinal elementary school-based study focusing on the interplay between the social-
emotional, behavioral, (neuro)cognitive, and bio-psychological development of children in the 
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Netherlands (Asscheman et al., 2020; Behnsen, Buil, Koot, Huizink, & van Lier, 2018; Tieskens, 
Buil, Koot, & van Lier, 2021). Participants were recruited from mainstream elementary schools 
in urban areas in the central part of the Netherlands and rural areas in the Eastern region. For 
a detailed description of the inclusion of schools, see de Wilde, Koot, and van Lier (2016). 
Written informed consent from parents was requested for their child(ren) to participate. Each 
year, we informed the parents, children and teachers about the study and the upcoming data 
collection. Children, parents and schools were free to refrain from participating at any time of 
the study. The project and its procedures were approved by the Medical Ethics Committee of 
the Vrije Universiteit Medical Centre (protocol number NL37788.029.11). 

The data used in this study originated from three consecutive age cohorts within the 
participating schools. Table 1 shows the data structure of the cohorts and descriptive 
information of the sample extracted from the larger study for data analysis. For cohort 1, data 
collection started in Grade 1 and continued until the end of elementary school. For cohort 2, 
data collection began in the second year of kindergarten (please note that the Netherlands has 
two years of kindergarten) until the end of elementary school. For cohort 3, data collection 
started in the first year of kindergarten and continued until the end of elementary school. 
Children’s data was included when at least three time points or waves of flanker data were 
available and when data on age was complete. Half of the schools did not participate in the 
cognitive tasks in cohort 1 at timepoint 2 (the assessment year 2013) due to logistical 
complications. We restructured the data according to age so that all children of the same age 
were included in one measurement wave (i.e., age 7, age 8, etc.). The final sample contained a 
total of 1424 children (51% boys, nested in 25 schools). Most of the children had a Dutch ethnic 
background (73%) and came from medium to high social economic status (SES) household 
(91%).  
 
Procedure 

Data were collected annually, usually during spring or summer, and during one or two 
school days. Children completed a modified flanker task in the afternoon of the testing day, 
supervised by trained research assistants in a quiet place at the children's schools to ensure 
privacy and focus. Within the same month, teachers completed an online questionnaire on 
children's emotional and behavioral problem behavior.  
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Table 1 
Available Sample Size, Age and Gender for Each Year and Cohort. 

 Assessment year 

 2012 2013 2014 2015 2016 2017 2018 

Cohort 1      
    

Age mean (sd) 8.1 (.42) 9.2 (.42) 10.1 (.43) 11.1 (.44) 12.1 (.44) 

N 442 255 649 679 632     

Gender (% female) 46.3% 

Cohort 2        

Age mean (sd) 7.1 (.40) 8.1 (.40) 9.0 (.44) 10.0 (.44) 11.0 (.43) 12.0 (.41)   

N 163 258  367 373 363 336   

Gender (% female) 50.1% 

Cohort 3        

Age mean (sd)  7.0 (.38) 7.9 (.39) 8.9 (.38) 9.9 (.40) 10.9 (.38) 12.0 (.37) 

N   211 273  309 318 295 284 

Gender (% female) 53.5% 

 
Measures 

Flanker Task 
The source code for the flanker task can be found on https://osf.io/hmek5/ (van der 

Jagt & Stoof, 2023). An Eriksen flanker task was modified to accommodate the current sample 
of children and study design. The flanker task was performed on a tablet computer. The task 
had four practice items followed by 60 trials. Four different arrows strings (> > < > >, > > > > >, < 
< > < <, < < < < <) were presented randomly between 1 to 2 seconds on the tablet screen. 
Participants were instructed to press the left button with the left index finger if the central 
arrow pointed to the left and the right button with the right index finger if the central arrow 
pointed to the right. Participants were instructed to press as fast as possible on the correct side. 
We recorded accuracy and response time from the stimuli onset to button press for congruent 
(< < < < <, > > > > > 50%) and incongruent (< < > < <, > > < > > 50%) trials. Trials started with a 100 
ms cue sign (+), where the central arrow of the string would appear. For cohorts 1 and 2 in 
2012, the task contained 56 rather than 60 trials due to a technical error, which is the reason 
why we report proportion correct instead of number of correct trials as accuracy. A trial was 
considered invalid when there was no-response within a window of 2000 ms or an invalid range 
of response time, between 200 and 2000ms. Also, if children finished less than 40 trials, they 
were excluded from the analysis. This resulted in the exclusion of 33 participants when they 
were 7 years old, 27 participants that were 8 years old, 35 9-year-old participants, 1 11-year-old 
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and 2 12-year-olds. Tapping the left and right buttons together was considered an error. 
Participants who had at least 50% of the trials correct were considered for analyses (excluding 
32, 18, 14, 4, 2, and 2 cases for year 7 to 12 respectively). 

We summarize means and standard deviations for each trial type's response time and 
proportion correct (accuracy). In general, faster response times and high accuracy indicate 
better performance monitoring. Incorrect incongruent response times were subtracted from 
incorrect congruent trials is here referred to the response time congruency effect, based on a 
typical flanker effect (Luo & Proctor, 2022). Similarly, the number of incorrect incongruent 
trials were subtracted from number of incorrect congruent trials to reflect the congruency 
effect of accuracy. Both are considered behavioral measures of conflict monitoring. We derive 
post-error and post-correct response times from previous trial response and response times. 
For post-error slowing, we used the formula for traditional PES (PESt), which is the reduction 
in response time following an error, quantified by the following formula: mRTtraditional=mRTpost-error 
– mRTpost-correct, where the mean response time (mRT) post-error is subtracted from post-correct 
(Schroder et al., 2020). 

Next, to establish a measure of speed-accuracy trade-off (SAT), we calculated a 
balanced integration score (BIS; Liesefeld & Janczyk, 2019). The BIS (Liesefeld & Janczyk, 
Equation 4) includes the standardized response time (ɀRT) of correct trials and the proportion 
correct (ɀPC): BIS = ɀpc- ɀ𝑅𝑇𝑖,𝑗̅̅ ̅̅ ̅̅ . We standardized the response time of correct trials and the 
proportion correct for each age group, incorporating any variance within this age group. A 
positive BIS indicates that performance was focused on accuracy rather than speed, in contrast 
to a negative BIS, which suggests that speed was favored over accuracy. Therefore, a value of 0 
indicates that the individual equally valued the speed and choice during the task. We display 
response times, PES and BIS across ages in Table 2.  

Emotional and Behavioral Problem Behavior  
Emotional and behavioral problems were assessed using the Problem Behavior at 

School Interview, teacher report (short version; PBSI, Erasmus Medical Center, 2000; Van Lier 
et al., 2004). In this 30-item questionnaire, teachers rated items of behavioral and emotional 
problems on five scales: Attention-Deficit/Hyperactivity Disorder related behavior (AD), 
oppositional defiant behavior (ODB), conduct problems (CP), anxiety- (ANX) and depression 
related behavior (DEP). The teacher rated behavior on a 5-point Likert scale, from 0 (never 
applicable) to 4 (always applicable). AD behavior was measured through 5 items (e.g., the child 
cannot sit still, is hyperactive), where the Cronbach's alphas (α) for all years ranged between 
.93 to .94. ODB was covered by 6 items (e.g., child contradicts a lot; range α = .88 to .95). CP was 
measured through 8 items (e.g., child threatens other children; range α = .90 to .96). ANX was 
measured using 5 items (e.g., the child is scared at school; range α = .80 to .93) and DEP was 
measured through 6 items (e.g., child cries or is sad at school; range α = .77 to .88). Higher 
mean scores indicate more problems. Table 2 presents the means and standard deviation of the 
PBSI scales.  

Gender 
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Gender was assessed via self-reports and coded as 0 = girl and 1 = boy.  
 
Statistical Analysis 

For descriptive statistics, IBM SPSS 28 was used. We used t-tests to examine gender 
differences for each age group. To investigate the development of flanker response time, we 
employed latent growth curve models, using the response time of all trial types (congruent and 
incongruent) as indicators of continuous latent growth factors in Mplus version 8.2 (Muthén & 
Muthén, 2018). In our latent growth curve models (LGM), the latent intercepts represent the 
initial mean response times at age 7, and the latent slope represents the mean rate of change 
across the ages. A positive slope indicates an increase in response time (slower response as 
children grow older), and a negative slope indicates a decrease in response time (faster 
responses as children grow older). A robust maximum likelihood estimator (MLR) was 
employed to deal with (potential) non-normal distributions of the measures. Full information 
maximum likelihood (FIML) was used to handle missing data. Standard errors were adjusted 
using a sandwich estimator to account for clustering of children in schools (Williams, 2000). 

We fitted separate growth models for all constructs (flanker response time and the 
PBSI scales: ANX, DEP, ODB, AD, CP) to establish the shape of the growth curve: linear, 
quadratic, or cubic. Models were evaluated when they were most parsimonious and with three 
model fit indices: the Comparative Fit Index (CFI), Tucker Lewis Index (TLI, Bentler, & Bonnet, 
1980) and the Root Mean Square Error of Approximation (RMSEA; Marsh, Hau, & Wen, 2004). 
Critical values for CFI ≥ .90, TLI ≥ .95, and RMSEA ≤ .06 were used to determine model fit (Hu & 
Bentler, 1995). We explored gender differences by estimating the paths of response time freely 
across gender and then comparing the model fit to the models where regression paths were 
equal for boys and girls. To identify which model (the freed or constrained model) best fit the 
data, we applied the Satorra-Bentler chi-square difference test for nested models (Satorra & 
Bentler, 2001).  

Next, five parallel-process LGM’s allowed for testing whether level and change in 
response time were associated with the level and change in behavioral and emotional 
problems. To this end, the growth parameters of the PBSI scales were regressed on the growth 
parameters of flanker response times. Possible gender differences in the association between 
response time and PBSI scales were tested by forcing the parameters to be free across gender 
and comparing the model to the model where the growth parameters were constrained (unless 
otherwise specified). A graphical representation of the parallel latent growth model of the 
flanker response time and problem behavior is visualized in Figure 1, found in the 
supplementary materials S2, section 1.  

Results 

Descriptive Statistics 
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In Table 2, we present the means and standard deviations of different behavioral 
measures of the flanker task and emotional and behavioral problem behavior between 7 and 12 
years old and speed-accuracy trade-offs. See supplementary material S1, tab 1 for gender 
differences tests in all measures and supplementary material S1 tab 2 for a correlation matrix 
between the response time and PBSI scales (online available through https://osf.io/xqg86/). 
Overall, all children scored low on all emotional and behavioral problem scales during all 
assessment years, indicating low levels of problems. Also, the emotional and behavioral 
problem scores decreased linearly across the 5 years (supplementary materials S2, section 2). 
There were random significant correlations between response times and PBSI scales at 
different ages.  

We performed LGM’s of proportion correct, response times per trial type and PES to 
explore the change in these variables over time, since the descriptive information suggests 
improvement over time. However, all these models had very poor model fit indices and the 
variances of the slopes were not significant (p > .112), suggesting lack of growth (see 

supplementary materials S2, section 2). For each year, a typical congruency effect in accuracy 
and response time was observed: there were more errors made on incongruent trials and 
longer response times for incongruent trials. This means that the typical flanker effect is found 
at all ages in this sample. T-tests revealed several gender differences at different time points, 
they can all be viewed in supplementary material S1, tab 1 (online available through 
https://osf.io/xqg86/). Briefly, at age 8, 9, 11, and 12, the overall percentage correct was larger 
for girls than boys. At age 8, boys performed faster on all trial types than girls. At other ages, 
boys and girls performed similarly. Regarding post-error slowing, overall, children showed 
longer response time after error trials than after correct trials each year. We encountered large 
kurtosis (ranging from 0.31 to 17.25) for the speed-accuracy trade-off BIS, driven by a few 
participants who had poor performance (large range in proportion correct). This is why Table 1 
shows the means as well as quartiles for BIS. Most participants in each year had a positive BIS, 
indicating that most children focused on accuracy rather than on speed. The BIS was mostly 
driven by the reduction of correct trial response time and high accuracy. Independent-sample 
Mann-Whitney U test revealed a gender difference in BIS only at 12 years of age, where boys 
had a larger BIS than girls. 
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Table 2 

Means and Standard Deviations for Accuracy, Response Times, Post-Error Slowing, Speed-Accuracy 
Trade-Offs and PBSI Scales in 7- to 12-Year-Old Children. 

 Age 

 7 8 9 10 11 12 

 M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

N 342 966 917 1336 1308 1250 

Accuracy 

Proportion correct 0.93 (.09) 0.95 (.08) 0.96 (.07) 0.96 (.06) 0.96 (.07) 0.97 (.05) 

Congruency effect  1.80 (3.74) 1.17 (3.19) 1.06 (3.54) 0.92 (3.02) 1.32 (4.17) 0.80 (2.53) 

Response time (in seconds) 

All trial types 1.05 (0.18) 0.93 (0.18) 0.77 (0.14) 0.70 (0.13) 0.65 (0.13) 0.61 (0.11) 

Congruency effect 0.06 (0.13) 0.06 (0.12) 0.06 (0.08) 0.05 (0.07) 0.05 (0.07) 0.04 (0.06) 

Post-error slowing      

Traditional 0.27 (1.02) 0.29 (1.00) 0.05 (0.26) 0.05 (0.20) 0.04 (0.19) 0.03 (0.18) 

       

Speed-Accuracy trade-off (Balanced integration score) 

Mean (SD) 0.002 (1.34) 0 (1.40) 0.001 (1.43) -0.005 (1.41) 0.002 (1.49) 0.02 (1.38) 

Lower quartile  -0.82 -0.57 -0.49 -0.48 -0.41 -0.48 

Median 0.20 0.27 0.29 0.25 0.29 0.26 

Higher quartile 1.02 0.94 0.94 0.85 0.87 0.85 

       

Behavioral and Emotional problems: PBSI scores 

AD 1.02 (1.08) 0.91 (1.01) 0.90 (1.00) 0.84 (.95) 0.76 (.94) 0.78 (.93) 

OBD  0.74 (.77) 0.69 (.78) 0.72 (.80) 0.66 (.76) 0.62 (.76) 0.65 (.75) 

CP 0.42 (.59) 0.38 (.60) 0.38 (.58) 0.35 (.55) 0.30 (.52) 0.34 (.55) 

ANX 0.91 (.74) 0.84 (.68) 0.83 (.70) 0.79 (.68) 0.76 (.69) 0.75 (.69) 

DEP 0.86 (.71) 0.74 (.69) 0.69 (.67) 0.66 (.64) 0.63 (.64) 0.68 (.67) 

Note. AD = Attention-Deficit/Hyperactivity Disorder related behavior; OBD = oppositional defiant behavior; CP = 
conduct problems; ANX = anxiety; DEP = depression symptoms. 
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Longitudinal Trajectory of Flanker Response Time 

Table 3 presents the model fit indices and model comparisons testing for gender 
differences in response times. For flanker response time, a quadratic model improved 
incremental fit over a linear model and was the most parsimonious model over a cubic model. 
The quadratic model had good fit measures (Table 3) where overall, children responded a little 
over one second at age 7 on flanker trials (Mean Intercept β = 1.09, SE = .019, p < 0.001) and 
response time decreased over time (Mean Slope βlinear = -0.18, SE = .011, p < 0.001; Mean Slope 
βquadratric = -.02, SE = .002, p < 0.001). To allow for a better interpretation of the quadratic slope, 
we segmented the quadratic slopes into two linear slopes (piecewise analyses), which was 
ultimately more parsimonious over the quadratic slope. Piecewise growth models showed that 
children's response times decreased at a faster rate between ages 7 and 9 compared to ages 10 
and 12 (Mean Slope age 7 to 9 years old β1 = -.17, SE = .01, p < 0.001, Mean Slope age 10 to 12 
years old β2 = -.05, SE = .002, p < 0.001). Next, the role of gender in the piecewise flanker 
response time model was investigated (Table 3). Freeing the intercept across gender 
significantly improved the model compared to constraining them to be equal for gender 
(Figure 1), indicating that boys had faster response time at age 7 (M = 1.04, SD = 0.19) than girls 
(M = 1.07, SD = 0.16). Yet, both slopes were similar for boys and girls, suggesting that the rate of 
decline in response times over time was similar across gender.  

Figure 1 

Response Time (in Seconds) of All Trail Types From Age 7 to 12-Years. 
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Table 3 

Model Fit and Model Comparison for Response Time, Gender Included.  

Model 
Fit Difference Tests 

Χ2 df CFI TFI RMSEA Model ΔΧ2 Δdf p 

1a. Linear model  491.57 16 .58 .61 .15     

1b. Quadratic model 66.01 12 .95 .94 .06 1a vs. 1b 314.62 4 <0.001 

1c. Piecewise model 57.86 12 .96 .95 .05     

Gender differences in piecewise model  

2a. Gender free 80.11 24 .96 .95 .06     

2b. Intercept equal 84.75 25 .96 .95 .06 2a vs. 2b 4.23 1 0.04 

2c. Slope 1 equal 81.23 25 .96 .95 .06 2a vs. 2c 1.55 1 0.21 

2d. Slope 2 equal 81.58 25 .96 .95 .06 2a vs. 2d 2.44 1 0.12 

Note. CFI = comparative fit index; TFI = Tucker Lewis Index; RMSEA = root mean square error of 
approximation. 

 

Associations of Flanker Response time and Problem Behavior. 

Model fit and model comparisons testing for gender differences in behavioral and 
emotional problems initial level (intercept) and development (slope) are shown in Table 2 in 
the supplementary materials S2, section 3. The regression coefficients for the associations 
between the growth parameters of response time and the behavioral and emotional problem 
scales are presented in Table 4. The figures in supplementary materials S2, section 4 are 
graphical representations of the association models. Note that parameter constraints based on 
gender differences testing level and growth rate in unconditional models for all constructs 
were retained in the parallel process LGMs. 

For anxiety symptoms, there was a positive association between the initial level of 
response time at age 7 and the slope of anxiety (B = .20, SE = .07, p = .03, 95% CI of B = .03 - .31, 
β =.25). This suggests that a slower response time at age 7 was associated with a steeper 
decrease in anxiety scores from age 7 to 12, regardless of gender.  

For depression symptoms, there was a positive association between slope of response 
time at age 7 to 9 years old and the slope of depression scores (B= .51, SE = .23, p = 0.02, CI of B 
= .07 - .95, β =.29). This indicates that a faster decrease in response time during age 7 to 9 years 
predicted a faster decrease in depression scores between 7 and 12 years for boys and girls.  

For ADHD symptoms, the association between the slope of response time at age 7 to 9 
and the slope of ADHD was significant and positive for boys (B = .63, SE = .24, p = .01, 95% CI of 
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B = .16 - 1.11, β =.39), but not significant for girls (p = .27). Similarly, the association between 
the slope of response time and the slope of ADHD between 10 and 12 years old was significant 
and positive for boys (B = 1.44, SE = .71, p = .04, 95% CI of B = .05 - 2.834, β =.28), but not 
significant for girls (p = .49). In other words, for boys a faster decrease in flanker response time 
was associated with a faster decrease in ADHD-Symptoms. 

For OBD symptoms, there was a positive association between the intercept of 
response time for boys and the slope of OBD scores (B = .17, SE = .08 p = 0.04, 95% CI of B = .01 - 
.33, β =.30), but not for girls (p =.46). This suggests that for boys, a slower response time 
predicted a steeper decline of OBD scores between 7 to 12 years. Also, there was a positive 
association between the slope of response time between 7 and 9 years and the slope of ODB in 
boys (B = .67, SE = .17, p < 0.001, 95% CI of B = .34 - 1.00, β =.54), but not in girls (p = .85). In 
other words, the faster decline of response time during 7- to 9-year-olds predicted a faster 
decline in overall OBD scores for boys.  

For conduct problems, none of the parameters were significantly linked to each other 
(table 4). This means that the initiation level and slopes of response time did not predict the 
level and development of conduct problem symptoms. 

Table 4  

Association Estimates of Parallel-LGM Models: RT and Behavioral and Emotional Problems. 

 RT 

 Intercept  Slope 1 (age 7 to 9) Slope 2 (age 10 to 12) 

 Boys Girls Boys Girls Boys Girls 

 B SE B SE B SE B SE B SE B SE 

AD 
Intercept 
Slope 

 
.34 
.13 

 
.38 
.10 

 
.34 
.16 

 
.38 
.14 

 
 
.63* 

 
 
.24 

 
 
.75 

 
 
.68 

 
 
1.44* 

 
 
.71 

 
 
-1.45 

 
 
2.10 

OBD 
Intercept 
Slope 

 
.25 
.17* 

 
.38 
.08 

 
.25 
.05 

 
.33 
.07 

 
 
.67** 

 
 
.17 

 
 
.12 

 
 
.64 

 
 
1.00 

 
 
.63 

 
 
.13 

 
 
2.00 

CP 
Intercept 
Slope 

 
.33 
-.03 

 
.37 
.09 

 
.28 
-03 

 
.21 
.12 

 
 
.21 

 
 
.17 

 
 
-.63 

 
 
1.07 

 
 
-.06 

 
 
.35 

 
 
2.33 

 
 
3.95 

ANX 
Intercept 
Slope 

 
.31 
.20* 

 
.34 
.07 

 
.31 
.20* 

 
.34 
.07 

 
 
.65 

 
 
.35 

 
 
.65 

 
 
.35 

 
 
.53 

 
 
1.34 

 
 
.53 

 
 
1.34 

DEP 
Intercept 
Slope 

 
.74 
.11 

 
.39 
.08 

 
.16 
.11 

 
.31 
.08 

 
 
.51* 

 
 
.23 

 
 
.51* 

 
 
.23 

 
 
.17 

 
 
.99 

 
 
.17 

 
 
.99 

Note. *p < .05; **p < .001; RT = response time; AD = Attention-Deficit/Hyperactivity Disorder related behavior; 
OBD = oppositional defiant behavior; CP = conduct problems; ANX = anxiety; DEP = depression symptoms. 
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Discussion 

The objective of this study was to explore the development of flanker performance 
and its association with the development of behavioral and emotional problems in children 
attending mainstream elementary schools. The performance monitoring in children improved 
over time, evidenced by a decrease in response time on all trial types of a flanker task, where 
the decrease in response time was most noticeable during age 7 to 9 compared to age 10 to 12. 
Boys initially had lower response times than girls at age 7, but the pattern of response time 
development was similar for boys and girls. We found associations between initial level 
response times and anxiety and opposition deviant behavior. We also found associations 
between the slope of response time between 7 to 9 and slope of problems relating to ADHD, 
ODB and depression. Finally, there was an association between the slope of response time 
between 10 and 12 years and the slope of ADHD.  

Although this was not a key aim of this study, this study provides a description of 
flanker performance measures across childhood. Even when we could not model the shape of 
growth of the other behavioral indices of the flanker performance, we found that the absolute 
values at each assessment year suggest improved accuracy and a stable speed-accuracy trade-
off. These results, together with the reduction of congruency effects in accuracy and response 
time, illustrate improved conflict monitoring across age 7 to 12 years old. Post-error slowing 
(PES) was larger at age 7 and 8, indicating larger response times after error trials. Yet as the 
children grew older, children had smaller response times after error-making, suggesting 
improved error monitoring.  

The decline in response time and improved accuracy of the children, is in line with 
other performance monitoring studies across childhood (Davies et al., 2004; Gavin et al., 2019; 
Overbye et al., 2019). Furthermore, our results fit the general idea of improved cognitive 
control (Luna et al., 2015) and the diffusion-drift model (DDM) often observed in cognitive 
force choice paradigms (Dutilh, Forstmann, Vandekerckhove, & Wagenmakers, 2013; Hall, 
Schreiber, Allen, & Hallquist, 2021; Ratcliff & McKoon, 2008). Briefly, the DDM allows for the 
translation of task behavior into the components of cognitive processing. In other words: the 
DDM represents the response time, accuracy and distribution of response times during the 
decision-making process of two-choice tasks, incorporating the processing of stimuli, noise, 
and the accumulation of information (Ratcliff & McKoon, 2008). The non-linear trend of 
response time can be explained by the typical brain maturation during this age group and into 
adolescence (e.g., Fuhrmann, Madsen, Johansen, Baaré, & Kievit, 2022; Ordaz et al., 2013) and 
by the development of brain areas (such as the ACC) involved in performance monitoring 
observed through electrophysiological reports (Boen, Quintana, Ladouceur, & Tamnes, 2022; 
Davies et al., 2004; Lo, 2018; Overbye et al., 2019). The observed congruency effect (response 
time and accuracy) across the ages in the current sample corresponds with studies that 
previously investigated conflict adaption in children (Larson, Clawson, Clayson, & South, 2012; 
Liu et al., 2018; Mullane, Corkum, Klein, & McLaughlin, 2009; van Meel, Heslenfeld, 
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Rommelse, Oosterlaan, & Sergeant, 2012). For instance, the response times and accuracy rates 
of the flanker task performed by the 10-year-olds sample in Lui et al. (2018) and the samples of 
6 to 9 years and 10 to 12 years in Van Meel et al. (2012) show similar values as observed in the 
current study. Considering the behavioral measure of error monitoring, the change in PES 
around 9 years (and the stable BIS) suggests improved error monitoring at a behavioral level. 
Although there are various explanations for PES (Danielmeier & Ullsperger, 2011; Dutilh, et al. 
2012), it is likely that children in this sample improved at processing the errors (reduction in 
error response times), improved focus on task performance and increased in error caution. 
Furthermore, this study identified gender differences in flanker performance across 
childhood, similarly to Gavin et al. (2019). There is no consensus on the significance of gender 
differences in performance monitoring tasks in children, however in adults it has been 
suggested that females are more prone to be distracted by the congruency effect, which is 
reflected in the PES (Fischer et al., 2016). Together, the flanker behavioral results suggest that a 
faster rate of performance monitoring and adaptive control development occurs before the age 
of 9, and as children aged, they became more stable in their ability to monitor their actions and 
adapt behavior to circumstances. 

We have observed several associations between the trajectory of response time and 
scores on four of the five problem behavior scales. The results indicate that if a child has lower 
response times at age 7 (that is: better task performance compared to a child with higher 
response times), then the child shows a steeper decline in anxiety and oppositional defiant 
behavior scores. Thus, faster task response times in younger children can be predictive of the 
reduction in problem behavior during childhood. Also, a steeper decline in response time 
across 7 to 12 years was associated with a steeper decline in ADHD related behavior, 
particularly for boys. In addition, early (age 7 to 9) fast decline of response time was predictive 
of a faster decline in depressive (both genders) and behavioral problems (ADHD and ODB for 
boys only), suggesting that the rate of improved task performance is linked to fast decline in 
problem behavior. It is noteworthy to mention that several associations were not gender 
specific, suggesting that the link between task performance and depressive and anxiety 
problems in children is equally important for both genders during childhood. The lack of 
gender differences in this link is informative for the use of cognitive control measures when 
investigating psychopathology. To our knowledge, there are no studies that investigated 
changes in task performance as a predictor of change of problem symptoms during childhood. 
However, differences in task behavior between children with and without anxiety and ADHD-
related behavior have been frequently reported (e.g., Mullane et al., 2009).  

The current study has several limitations. First, a possible limitation regards the 
current sample, which included primarily Caucasian children from mainstream elementary 
schools. The included schools were a convenience sample, introducing a possible bias not 
including unrepresented samples. Also, we do not have records on whether children in these 
schools had any diagnosed learning or psychological disorders. It is possible that children 
diagnosed with psychological problems, of which it is known that performance monitoring can 
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be affected, are included in this sample. Second, the current study used the PBSI, a teacher 
informed measure on problem behavior observed in the school context. Although scores PBSI 
could be an accurate substrate of daily maladaptive behavior (especially for ADHD related 
behavior in schools) and a good substitute for behavioral reports for young children (who 
might have a reduced ability to self-reflect on their behavior), adding self-report or multi-
informant measures can give a more complete few of psychological problems. Last, while 
there were associations between response time and problem behavior, we cannot draw any 
conclusions on the directionality of these associations. We based the directionality of the 
effects on theoretical assumptions, but bidirectional or reverse directions of the associations 
are possible. Also, the current study investigated performance monitoring on a behavioral 
level. With the addition of electrophysiological measures, examining the underlying brain 
processing of the conflict and error monitoring, insight can be given in the complex relation 
between task behavior and the processes that drive daily maladaptive functioning.   

The results of the current study help to pinpoint several future research avenues. 
Task-related variables of influence, such as response-to-stimulus intervals (Smulders et al., 
2016) or trial type expectancy (Gratton et al., 1992) were not investigated here. Also, individual 
behavioral change or conflict adaptation within the task (between trials), task difficulty and the 
order of trial types (which determine the level of accumulated conflict) are known to influence 
the performance in subsequent trials (Larson, Clayson, & Clawson, 2014; Lui et al., 2018). 
Investigating these behavioral adaptation phenomena over time in children can inform 
research on the development of cognitive control abilities. With the current knowledge we 
have on performance monitoring through behavioral studies like the current study and other 
neurophysiological studies, it is time to investigate how individual differences in trial-to-trial 
variability in task performance are related to brain changes (e.g., Tamnes et al., 2012) and 
symptomatology (e.g., Clayson et al., 2022) in longitudinal designs. 

Conclusion 

Our study is a unique investigation of the developmental trajectory of flanker 
performance and has explored the associations with problem behavior in elementary school 
children. Improvement of flanker performance over time was observed, which illustrates the 
normative development of performance monitoring in 7-to 12-year-old children. We found that 
flanker performance is associated with problems in anxiety, depression, and ADHD- and 
oppositional-related behavior during childhood and that there are specific gender differences 
in these associations. The current study illustrates the significance of behavioral indices of 
cognitive control development and pinpoints an important link with psychological problems in 
children.  
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Supplementary Materials 1: 

Available only: https://osf.io/xqg86/. 

 

Supplementary Materials 2:  

Contents: 

Section 1: Graphical representation of parallel latent growth model of response time 
and emotional or behavioral problems. 
Section 2: Model fit for accuracy, response times per trial type and PES.  
Section 3: Model fit and model comparisons testing for gender differences of emotional 
and behavioral problems. 
Section 4: Simplified graphical representation of the associations between flanker 
response times and emotional and behavioral problems. 
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Section 1  

Figure S1 

Graphical representation of parallel latent growth model of response time and emotional or behavioral 
problems. 

 

  



 

82  

Section 2:  

Table S1. 

Model fit for accuracy, response times per trial type and PES. 

  Fit P-values for 

Measure Model Χ2 df CFI TFI RMSEA 
Variance in 
Intercept 

Variance 
in slope 

Accuracy Linear 28.52 16 .80 .82 .02 .12 .28 

Response time Incongruent 
trials 

Linear 395.33 16 .64 .67 .13 < 0.00 
.30 

Response time Congruent 
trials 

Linear 450.62 16 .56 .53 .14 < 0.00 
.80 

Response time Correct trials Linear 538.98 16 .58 .60 .16 < 0.00 .93 

Response time Error trials Linear 222.17 16 0 -.43 .10 0.03 .65 

PES Linear 45.81 16 0 1.00 .04 .89 .71 

Note. CFI = comparative fit index; TFI = Tucker Lewis Index; RMSEA = root mean square error of 
approximation. 
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Section 3:  

Table S2. 

Model fit and model comparisons testing for gender differences of emotional and behavioral problems. 

Model  Fit  Difference Tests  
Anxiety  Χ2 df CFI TFI RMSEA Model ΔΧ2 Δdf p 
1a. Linear model   12.72 16 1.00 1.00 0 1a vs. 1b 1.44 4 .83 
1b. Quadratic model  12.44 12 1.00 1.00 .01     

Gender differences           

2a. Gender free  28.27 32 1.00 1.00 0     

2b. Intercept equal  28.32 33 1.00 1.00 0 2a vs. 2b .04 1 .84 
2c. Slope equal  28.37 33 1.00 1.00 0 2a vs. 2c .02 1 .89 

Anxiety on Response time models (gender included)      

3a. Constrained 
model  

192.01 128 .97 .97 .03     

3b. Intercept anxiety 
and intercept RT free  

192.20 127 .97 .97 .03 3a vs 3b. .23 1 .63 

3c. Slope anxiety and 
intercept RT free  

192.12 127 .97 .97 .03 3a vs. 3c .08 1 .72 

3d. Slope anxiety and 
slope s1 RT free  

192.44 127 .97 .97 .03 3a vs. 3d .06 1 .80 

3e. Slope anxiety and 
slope s2 RT free  

193.32 127 .97 .97 .03 3a vs. 3e .02 1 .89 

Depression          

1a. Linear model   19.04 16 1.00 1.00 .01     
1b. Quadratic model  14.31 12 1.00 1.00 .01 1a vs. 1b 4.75 4 .31 
Gender differences           
2a. Gender free  40.22 32 .99 .99 .02     
2b. Intercept equal  48.50 33 .98 .99 .03 2a vs. 2b 12.69 1 .0004 
2c. Slope equal  41.71 33 .99 .99 .02 2a vs. 2c 1.82 1 .18 

Table 1 continued 
Fit Difference Tests 

Χ2 df CFI TFI RMSEA Model ΔΧ2 Δdf p 
Depression on Response time models (gender included) 
3a. Constrained 
model  

223.63 127 .96 .96 .03     

3b. Intercept 
depression and 
intercept RT free  

217.21 126 .96 .96 .03 3a vs 3b. 793.39 1 <0.001 

3c. Slope depression 
and intercept RT free  

220.15 126 .96 .96 .03 3a vs. 3c 6.88 1 .01 

3d. Slope depression 
and slope s1 RT free  

221.85 126 .96 .96 .03 3a vs. 3d 1.78 1 .18 
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3e. Slope depression 
and slope s2 RT free  

214.77 126 .96 .96 .03 3a vs. 3e 0.81§ 1§ .37§ 

ADHD          

1a. Linear model   16.58 16 1.00 1.00 .01     
1b. Quadratic model  14.22 12 1.00 1.00 .01 1a vs. 1b 3.32 4 .51 
Gender differences           
2a. Gender free  39.09 32 1.00 1.00 .02     
2b. Intercept equal  104.82 33 .95 .95 .06 2a vs. 2b 205.66 1 <0.001 
2c. Slope equal  43.84 33 .99 .99 .02 2a vs. 2b 4.26 1 0.04 

ADHD on Response time models gender included      

3a. Free model  205.09 122 .97 .97 .03     

3b. Intercept ADHD 
and intercept RT 
equal  

207.97 123 .97 .97 .03 3a vs 3b. 3.87 1 < 0.05 

3c. Slope ADHD and 
intercept RT equal  

206.98 123 .97 .97 .03 3a vs. 3c 2.33 1 .13 

3d. Slope ADHD and 
slope s1 RT equal  

205.73 123 .97 .97 .03 3a vs. 3d .02 1 .89 

Table 1 continued 
Fit Difference Tests 

Χ2 df CFI TFI RMSEA Model ΔΧ2 Δdf p 
3e. Slope ADHD and 
slope s2 RT equal  

212.02 123 .97 .97 .03 3a vs. 3e 1.30§ 1§ 0.25§ 

CP          

1a. Linear model   34.33 16 0.99 0.99 0.03     
1b. Quadratic model  34.35 12 0.99 0.99 0.04 1a vs. 1b 5.31 4 0.26 
Gender differences           
2a. Gender free  60.50 32 0.98 0.98 0.04     
2b. Intercept equal  96.98 33 0.95 0.95 0.05 2a vs. 2b 27.34 1 <0.001 
2c. Slope equal  62.65 33 0.98 0.98 0.04 2a vs. 2c 2.42 1 0.12 
CP on Response time models gender 
included 

      

3a. Free model  235.69 123 .96 .96 .04     

3b. Intercept CP and 
intercept RT equal  

236.14 124 .96 .96 .04 3a vs 3b. 0.01 1 .91 

3c. Slope CP and 
intercept RT equal  

235.13 124 .96 .95 .04 3a vs. 3c .16§ 1§ .69§ 

3d. Slope CP and 
slope s1 RT equal  

239.12 124 .96 .95 .04 3a vs. 3d 1.53§ 1§ .22§ 

3e. Slope CP and 
slope s2 RT equal  

237.62 124 .96 .95 .04 3a vs. 3e 1.95 1 .16 

ODD          

1a. Linear model   25.07 16 1.00 1.00 0.02     
1b. Quadratic model  25.74 12 0.99 0.99 0.03 1a vs. 1b 3.04 4 0.55 
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Gender differences           
2a. Gender free  46.81 32 0.99 0.99 0.03     
2b. Intercept equal  72.89 33 0.97 0.97 0.04 2a vs. 2b 51.28 1 <0.001 
          

Table 1 continued 
Fit Difference Tests 

Χ2 df CFI TFI RMSEA Model ΔΧ2 Δdf p 
2c. Slope equal  47.31 33 .99 .99 .03 2a vs. 2c .29 1 .59 
ODD on Response time models gender included      

3a. Free model  213.24 123 .97 .97 .03     

3b. Intercept ODD 
and intercept RT 
equal  

212.43 124 .97 .97 .03 3a vs 3b. .82§ 1§ .37§ 

3c. Slope ODD and 
intercept RT equal  

228.79 124 .97 .97 .03 3a vs. 3c .73§ 1§ .39§ 

3d. Slope ODD and 
slope s1 RT equal  

213.33 124 .97 .97 .03 3a vs. 3d .66 1 .42 

3e. Slope ODD and 
slope s2 RT equal  

211.17 124 .97 .97 .03 3a vs. 3e 0.02 1 .89 

Note. CFI = comparative fit index; TFI = Tucker Lewis Index; RMSEA = root mean square error of 
approximation.§ We observed a negative Chi-square value for the Satorra Bentler test. To test if the 
path was significantly different for boys and girls, we employed the Wald chi-square test of parameter 
equalities instead. AD = Attention-Deficit/Hyperactivity Disorder related behavior; OBD = oppositional 
defiant behavior; CP = conduct problems; ANX = anxiety; DEP = depression symptoms. 
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Section 4 

Figures S2  

Simplified graphical representation of the associations between flanker response times and 

a. PBSI anxiety score.  
b. PBSI depression score.  
c. PBSI oppositional defiant behavior score.  
d. PBSI ADHD score. 

 

Note. Path estimates are standardized regression coefficients. Solid arrow = significant at * p < 
0.05 or ** p < 0.001, dashed arrow = insignificant. Gender-specific associations were 
represented as girls/boys (e.g. .31*/ .27*).  

a. b. 

c. d. 
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Chapter 5 

 

 

Investigating the Associations Between Infant Behavioral Inhibition, Social Anxiety, and 
Social Error Processing during Adulthood 

 

 

This chapter is based on:  

Lutz, M. C., Lakhlani, D., Smith, A. S., Tang, A., Guyer, A., Kok, R., Franken, I. H. A., Fox, N. 
A., Pine, D. S, & Harrewijn, A. Effects of Infancy Behavioral Inhibition on Social Processing 
and Risk for Social Anxiety during Adulthood. 
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Abstract 

High infant Behavioral Inhibition (BI) increases risk for social difficulties and anxiety, 
suggesting long-term consequences for adult socioemotional development. Infant BI and social 
anxiety also affect error processing. Whether this effect extends to social contexts remains 
unclear. In this prospective, 30-year longitudinal study, we investigated the long-term 
association between infant BI and self-reported social anxiety, and the association between 
infant BI and social anxiety on adult brain and behavioral measures of social error processing. 
To examine the role of social observation in error processing, participants performed a social 
flanker task during magnetic resonance imaging. We expected pregenual anterior cingulate 
activity to be associated with social error processing in participants who scored high on social 
anxiety and infant temperament. The final sample included data from 24 participants (50% 
male, mean age 29.50 years). Infant BI was not related to self-reported adult social anxiety 
scores. We found an interaction effect of temperament and social anxiety on activity in the 
middle cingulate cortex, temporal and precentral gyrus. We also found a main effect of social 
vs. alone condition of the social flanker task on activity in middle cingulate cortex. For all 
regions, activity was stronger during the processing of correct vs. error trials in the social 
condition. The results suggest that the brain devotes more performance monitoring processing 
to facilitate better performance during social observation. Despite the small sample size due to 
attrition over 30 years, we argue that the social flanker task has the potential to investigate 
social error processing in individuals.  
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Investigating the Associations Between Infant Behavioral Inhibition, Social Anxiety and 
Social Error Processing during Adulthood 

The temperamental trait behavioral inhibition (BI) is characterized by fearful, shy, 
timid, or withdrawn behavior in unfamiliar situations early in life (Dilalla et al., 1994; Fox et 
al., 2001). High observed BI during infancy increases the risk for social difficulties and 
behavior, such as problems during peer interactions and social withdrawal during childhood 
(Buzzell et al., 2021; Pérez-Edgar et al., 2011; Sandstrom et al., 2020). Also, there is a 
relationship between infant BI and difficulties in social interactions during adolescence (Buss 
et al., 2021; Chronis-Tuscano et al., 2009; McDermott et al., 2009; Nozadi et al., 2018). In 
addition, approximately 40% of children with BI develop anxiety disorders (Gladstone et al., 
2005; Muris et al., 2011; Rapee et al., 2010) and social anxiety in particular (Clauss & Blackford, 
2012), making it vital to study who is at risk. Several studies have addressed the potential 
consequences of infant BI on socioemotional development in adulthood, where and increased 
risk of internalizing problems was related to high infant BI (Asendorpf et al., 2008; Caspi, 1996; 
Caspi et al., 2003). In addition, infant BI predicts poorer social and cognitive functioning in 
adults (Tang et al. 2020). The social and anxiety-related problems that are driven by infant BI 
suggest that underlying neurocognitive processes may be affected. Therefore, the current 
study aims to investigate the long-term association between infant BI on self-reported social 
anxiety, as well as the association between infant BI and social anxiety on brain and behavioral 
measures of social information processing in adulthood.  

Infant BI, Anxiety, and Error Processing 

Social anxiety can be defined as heightened distress and fear in response to social 
evaluation (Rapee & Heimberg, 1997). Social contexts trigger the processing of social and 
evaluative information, requiring increased vigilance during social interaction. The processing 
of this information requires performance monitoring, a capacity that is driven by the neural 
system that is responsible for salience detection presented in social contexts (Henderson et al., 
2015). An important component performance monitoring involves the detection and 
processing of errors, which is measured by the event-related potential error-related negativity 
(ERN) (Falkenstein et al., 1991; Gehring et al., 1993), or can be observed by the activation of the 
anterior cingulate cortex (ACC) in the brain (Ridderinkhof et al., 2004; Van Veen & Carter, 
2002b). In children and adults, an enhanced neural response to error monitoring is related to 
anxiety (Meyer, 2017; Moser et al., 2013). In addition, error monitoring appears to be an 
important moderator in the BI and anxiety relationship (Lahat et al., 2014; Tang et al., 2020; 
Fox et al., 2023), where a positive association between infant BI and internalizing 
psychopathology was found in those who had an enhanced ERN. Error processing might be an 
underlying neurocognitive process that is influenced by BI and anxiety, which in turn, is 
related to socioemotional development during adulthood. However, this has not yet been 
examined. Therefore, in the current study, we test the association between infant BI and 
current social anxiety on error processing in adults.  
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Social Error Processing in the Brain 

Social factors appear to influence error processing in adults, such that the presence of 
peers increases the pressure to perform well (Geen, 1991; Geen & Bushman, 1989; Zajonc, 
1965). Theoretically, biopsychosocial models of social motivation explain how someone, in the 
presence of others, would be determined to reduce error-making to avoid the risk of social 
evaluation. Social evaluation is threatening for an individual as this could lead to social 
exclusion (Baumeister & Leary, 1995) and related consequences such as reduced self-esteem 
and increase in experience negative emotions (Blackhart et al., 2009). To avoid the risk of social 
evaluation and its consequences, there is an increase in arousal and fear in the individual 
during performance monitoring. To measure the effect of the social context during 
performance monitoring, the social flanker task (Barker et al., 2015; Buzzell et al., 2017; Smith 
et al., 2019) was developed. It is a modified Eriksen flanker task (Eriksen & Eriksen, 1974) 
which stimulates the ‘social pressure effect’ during error monitoring as the participant is 
instructed that they are being observed by someone during their task performance. In the 
social flanker task, there is a larger ERN in the condition where the participants thought they 
were monitored and evaluated during task performance in children (Kim et al., 2005) and 
adults (Barker et al., 2015). Making errors while they thought they were observed by peers 
elicited activation in the pregenual part of the anterior cingulate cortex in children with 
anxiety disorders (pgACC; Smith et al., 2019). On a mechanistic level, this could be interpreted 
that errors made in a social condition of the social flanker task were more distressing and 
threatening than in the ‘alone’ condition.  

So far, the social flanker task has not yet been performed in adults to investigate the 
activation of social error processing by the brain. Also, given that infant BI and social anxiety 
are related to error processing, it is possible that infant BI and social anxiety are also 
associated with social error processing. This is because infant BI and anxiety are both 
associated with a bias to quickly and preferentially process information that is motivationally 
salient (the social condition). When this bias becomes strong and persistent across 
development, the fear of performing well in social contexts increases (Henderson et al., 2015). 
Given this hypothesis, we test if infant BI and self-reported social anxiety are associated with 
the social error processing in the pgACC during adulthood.   

The present study 

The aims for the current study are threefold. First, we aim to test whether infant BI is 
related to self-reported social anxiety in adulthood. Second, we explore the social error 
processing during brain imaging (MRI) by applying the social flanker task. Third, we aim to 
test whether infant BI and adult social anxiety are both related to social error processing in 
adulthood. We preregistered the following hypotheses for this study (Lutz et al., 2022). First, 
we hypothesized that participants with higher infant BI report more social anxiety symptoms 
during adulthood (Sandstorm et al., 2020). For the second hypothesis, we expected standard 
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flanker task effects on a behavioral level (congruency effect; Botvinick et al., 2001) and neural 
level (activation in the ACC and other performance monitoring-related areas, reported in Smith 
et al., 2019). We explored possible effects of condition on task performance and whether social 
anxiety is related to the social flanker task performance. Third, we expected a significant 
interaction between infant BI and social flanker condition (social vs. alone) on the activation of 
the pgACC during the processing of errors in incongruent trials. We expected to observe more 
activation in the pgACC in the social condition than in the alone condition for participants that 
score high than those who score low on infant BI. Fourth, we hypothesized a significant 
interaction between current social anxiety symptoms and social flanker condition (social vs. 
alone) on the pgACC activation during the processing of errors in incongruent trials. We 
expected to observe more activation in the pgACC in the social condition than in the alone 
condition for participants that score high vs. low on social anxiety symptoms. Finally, we 
expected to observe a significant three-way interaction between infant BI, current social 
anxiety in adulthood, and social flanker condition (social vs. alone) on the activation of the 
pgACC during the processing of errors in incongruent trials. We expected to observe more 
activation in the pgACC in participants with both high BI and increased social anxiety 
symptoms as opposed to participants who score low on both, in the social condition vs. the 
alone condition during the processing of errors in incongruent trials. 

Method 

Sample 

The current study is part of a prospective longitudinal study to investigate the long-
term effects of infant temperament on socio-emotional development (Fox et al., 2001). A 
participant flowchart is presented in Figure 1. Participants (n = 165, 50.1% female) were 
originally recruited from a cohort of 4-month-old infants screened on motor and emotional 
reactivity (Calkins et al., 1996; Fox et al., 2001; Kagan et al., 1998) between 1989 and 1993 in the 
Washington DC area. For more information on the recruitment, in- and exclusion criteria of 
the infants, see Fox et al. (2001). The exclusion criteria for the current study were contra-
indications for the MRI (e.g., pregnancy or metal implants), a family member working at the 
NIH, IQ below 70, any use of psychotropic medication (e.g., selective serotonin reuptake 
inhibitor: SSRI’s), and diagnosis of psychiatric conditions (psychosis, post-traumatic stress, 
bipolar, or obsessive-compulsive disorder).  

Twenty-four participants (50% female, mean age = 29.48 years old, SD = 2.1) were 
included in the final analysis. All participants were White and almost all were not 
Latino/Hispanic. Regulations and safety concerns due to the COVID-19 pandemic and the fact 
that most participants no longer lived near the research facility were reasons for attrition. All 
participants provided informed written consent prior to completing all mental and physical 
examinations and MRI scanning. Participants were paid $210 for completing all measurements 
and compensated for traveling. The Institutional Review Boards of the National Institute for 
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Mental Health and the University of Maryland approved all procedures (IRB number: 03-M-
0186).  

Figure 1.  

Flowchart of participants.  

 

 

Procedure 

The study consisted of the following components: physical evaluation by a medical 
doctor, clinical interview by a trained clinician (SCID; Structured Clinical Interview for DSM-IV 
Axis I disorders; First, Spitzer, Gibbons & Williams, 1995), the vocabulary and matrix reasoning 
subtest of the WAIS intelligence test (Wechsler Adult Intelligence Scale; Psychological 
Corporation, 1999), self-report questionnaires, and the MRI scan. The MRI scan consisted of 
two tasks: the Monetary Incentive Delay task (MID; Knutson et al., 2000; 2005; not relevant for 
the current study) and the social flanker task. Block randomization was applied for the task in 
the scanner: half of the participants started with the social flanker, and the other half began 

Participants originally 
included (n = 165) 

Participants interested to 
participate in 2017 (n = 94) 

Excluded (n =53) 

• Unresponsive/no longer interested in 2019 (n = 25) 
• Canceled & failed to be rescheduled (n = 5) 
• Did not meet inclusion criteria (n = 23) 
 

Participant visits (n = 41) 

Final sample (n = 24) 

Not analyzed (n = 17) 

• Unsuccessful MRI (n = 2) 
• Wrong scan protocol (n = 2) 
• Excess movement (n = 2) 
• Missing temperament (n = 5) 
• Missing social anxiety (n = 4) 
• Not enough errors (n = 2) 
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with the MID task. The order of condition (social vs. alone) of the social flanker task was 
randomly assigned among participants. Participants had the option to visit the NIH and 
perform all components in one day or have the visit split into two days. 

 

Measures  

Infant Temperament: Behavioral Inhibition  

Infant BI (Calkins et al., 1996; Kagan et al., 1987) was measured in infants when they 
were 14 and 24 months (Fox et al., 2001). For the current study, if both measurements were 
available, they were averaged. If not, we took one of the available BI scores to maximize the 
sample size. The procedure for determining temperament at 14-month-old and at 24-months-
old are briefly explained below. For a full account of the procedure, including the times and 
setting of the observations, see Fox et al. (2001). 

The infant BI score at 14 months is a composite of fearful and avoidant behaviors 
observed during three episodes in a laboratory setting: a free-play session in an unfamiliar 
playroom, an introduction to an adult stranger, and an introduction to a novel toy robot. 
Infants’ reactions during these three episodes was recorded and coded using to the following 
categories: (1) the latency to first touch the toy during free play, (2) the latency to vocalize 
during free-play, (3) time spent in proximity (within an arm’s length) of the mother during 
free-play, (4) the latency to vocalize to the stranger, (5) the latency to approach the stranger, (6) 
time spent in proximity to the mother while the stranger presented the infant with a toy, (7) 
latency to vocalize to the robot, (8) latency to approach the robot, and (9) time spent in 
proximity to mother during the robot episode.  

The infant BI score at 24 months was derived from the reactions during the identical 
three episodes, and in addition, their willingness to crawl through an inflatable tunnel and the 
reaction of the infant to an adult stranger in a clown costume. As presented in Fox et al. (2001), 
infants’ behavior was recorded and coded using the following categories: (1) time spent in 
proximity (within an arm’s length) of the mother during free-play, (2) time spent in proximity 
to the mother while the stranger presented the infant with a toy, (3) time spend in proximity to 
the mother during the robot episode, (4) time spent in proximity to mother during the tunnel 
episode (5) latency to approach the stranger and/or touch the toy, (6) latency to approach 
and/or touch the robot, (7) latency to pass through the tunnel.  

For both time points, the summarized scores from the episodes were standardized. 
Two observers rated each episode, using percentage agreement for reliability for 15% of the 
data. Pearson’s correlations between the paired coders ranged between .85 and 1.0 for the 14-
month-olds and .77 to .97 for the 24-month-old infants. We mean-centered the infant BI for the 
MRI analyses. 
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Social anxiety: Liebowitz Social Anxiety Scale 

 The Liebowitz Social Anxiety Scale (1987) is a self-report questionnaire to measure 
social anxiety. In this questionnaire, participants had to rate their fear and avoidance in 24 
situations on a 4-point Likert scale (0 = none, to 3 = severe). High LSAS scores indicate more 
social anxiety. The self-report questionnaire has very good psychometric properties, including 
good test-retest reliability and high internal consistency (α = 0.95 for total score) (Baker et al., 
2002; Heimberg et al., 1999). We used the total score by adding all the item scores and then 
standardizing them among the included participants. For the MRI analyses, we mean-centered 
the LSAS scores. 

Social Error Processing: Social Flanker Task 

The social flanker (displayed in Figure 2) is a version of the flanker task (Eriksen & 
Eriksen, 1974), based on the task reported by Barker et al. (2015; 2018), Buzzell et al. (2017) and 
Smith et al. (2019). In the current study, the social flanker task is a modified (more trials and 
shorter response window, described below) version of the task used in Smith et al. (2019) to 
accommodate the adult sample. In this task, a row of five arrows pointing to either left or right 
is displayed in each trial. Participants were instructed to indicate the direction of the middle 
arrow by pressing a button with the corresponding hand. In the congruent trial (50% of the 
trials), all the arrows point in the same direction, whereas in the incongruent trial (50% of the 
trials), the middle error is in the opposite direction. After 16 practice trials, participants 
completed two blocks of trials (160 trials each, approximately a 6-minute run) for the social 
condition and two blocks for the alone condition (a total of 640 trials). In the social condition, 
the participant believed they were being observed by a same-sex peer, who would make 
predictions on the participant’s performance based on participant information given prior to 
the scan (first name, age, favorite color). In the alone condition, performance feedback was 
generated by a computer. Feedback on the performance was given to the participant to 
maintain a good speed-accuracy trade-off. Specifically, ‘good job’ was shown for accuracy 
between 75-90%, ‘go faster’ was given when accuracy was above 90%, and ‘be more accurate’ 
was shown when accuracy was under 75%. In reality, no other participant was present during 
the social flanker, and pre-recorded audio files facilitated the deception (Smith et al., 2014). All 
participants received a debriefing about the deception following the scan, including a check 
question of whether they believed the deception. The social flanker task was performed 
through E-Prime. All task stimuli were presented in white on a black screen. The flanker 
stimuli appeared for 200 ms after random amount of time (0 – 300 ms). Response was recorded 
in a window of 1700 ms. Intertrial interval was 135 ms. We considered the omission of a 
response as an error. 
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Figure 2.  

Depiction of the social flanker task. The condition was counterbalanced.  

 

Note. Feedback presented on screen was dependent on participants’ task performance. 

 

Functional Magnetic Resonance Imaging 

fMRI Data Collection. The fMRI images were acquired on a 3T MR750 General Electric 
scanner (Waukesha, Wisconsin, USA) with a 32-channel head coil at the National Institutes of 
Health, North Bethesda, MD. For each block, 216 volumes were generated. Standard T2*-
weighted echo-planar imaging (EPI) sequence (with 42 interleaved axial slices) was applied to 
acquire the blood-oxygen-level-dependent (BOLD) signal (repetition time (TR) = 2000ms; time 
to echo (TE) = 25 ms; flip angle = 60°; FOV = 240 mm; matrix = 96 × 96; in-plane resolution = 3 × 
2.5 × 2.5 mm). For the anatomical scans, a T1-weighted magnetization prepared rapid gradient 
echo was used (MPRAGE; TE = minimum full; TI = 900ms; flip angle = 7°; FOV=256mm; 256 × 
256-pixel matrix; in-plane resolution = 1 × 1 × 1 mm).  

fMRI Preprocessing. The software program Analysis of Functional NeuroImages 
(AFNI; Cox, 1996) was used for quality checking, pre-processing, and group-level data analyses. 
The first and second authors (MCL, DL) performed standard quality checking and pre-
processing steps, as described in Smith et al. (2019). Data only from participants with less than 
10% TR censored were analyzed. Pre-processing of the MRI data included the inspection of 
signal spikes, slice-time correction, co-registration, and spatial smoothing (6mm smooth 
kernel, full width at half maximum). Standard Talaraich space was used for warping, and TRs 
greater than 1mm of movement were excluded.  
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For each participant, an individual-level general linear model (GLM) was performed. 
This included six regressors (time-locked to the onset of each stimulus) for each social flanker 
condition (social vs. alone) based on their accuracy and trial type: correct-congruent, correct-
incongruent, commission error-congruent, commission error-incongruent, omission error-
congruent, omission error-incongruent. AFNI’s 3dClustSim (Cox et al., 2017) was applied to 
allow for the computation of a cluster-size threshold for a voxel-wise p-value (based on 10,000 
Monte-Carlo simulations). Following Eklund et al. (2016), a non-Gaussian auto-correlation was 
assumed for the smoothing function. The cluster contiguity threshold was determined with a 
voxel-wise probability threshold of p < 0.001 and the family-wise error rate of α = 0.05. This 
resulted in a cluster contiguity threshold of 1161 mm³ or 43 voxels. 

Preregistered Analysis 

To test the first hypothesis (whether infant BI is related to social anxiety), we 
performed a linear regression. For the second hypothesis, testing whether accuracy and 
response times differ for each trial type and condition of the social flanker task, we performed 
a 2 by 2 analysis of variance (ANOVA). For the remaining hypotheses, we used a linear mixed-
effects model (3dLMEr: Chen et al., 2013), where the brain activity during error vs. correct 
incongruent trials is the dependent variable, LSAS and BI scores are continuous, between-
subject independent variables, and social condition (social vs. alone) is the within-subject 
independent variable. 

Exploratory analysis 

We explored the relationship between task performance and current social anxiety. 
We conducted two repeated-measures ANOVAs, the first examining accuracy and the second, 
response times. For both analyses, the standardized LSAS score was the continuous between-
subjects variable. The two within-subjects variables were the condition (social vs. alone) and 
trial type (incongruent vs. congruent). 

Results 

Sample and variable characteristics are presented in Table 1. To answer the first 
hypothesis, a regression analysis revealed that infant BI and social anxiety in adulthood were 
not significantly related (b = 0.034, p = .08). 
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Table 1.  

Descriptives of the sample and all study variables 

Demographics (n= 24) Mean SD Range 
Age 29.48 2.07 26.7 to 33.59 
IQ (n= 10) 116 13.71 99 to 137 
Gender 50% male 
Ethnicity 96% Not Latino/Hispanic 
Race 100% White 
Clinical measures  

Standardized infant BI 0.034 2.47 -3.2 to 5.94 
LSAS at MRI scan 31.60 26.16 6 to 99 
SCID past (n= 18) Any disorder = 9 No disorder = 9  

SCID present (n= 18) Yes disorder = 7 No disorder = 11  

Other Information    

Deceived (n= 11) Yes = 7 No = 2 Not sure = 2 
Note. LSAS = Liebowitz Social Anxiety Scale, SCID = Structured Clinical Interview 
for DSM-IV Axis I disorders. 

 

Social Flanker Task Effects  

For the first part of the second hypothesis, we expected standard flanker congruency 
effects for response times and accuracy. We also explored the effect of condition on response 
times and accuracy. For response times, no differences between congruent and incongruent 
trials (F 1,88 = 0.57, p = .45), between the social and alone condition (F 1,88 = 0.04, p = .85), or the 
interaction between congruency and condition (F 1,88 = 1.04, p = .31) were found. For accuracy, 
there were differences for incongruent vs. congruent trials (F 1,88 = 33.85, p < .001), but not for 
condition (F 1,88 = 0.01, p = .92) or the interaction between congruency and condition (F 1,88 = 
0.23, p =.63). More errors were made in incongruent trials vs. congruent trials (t = 5.34 (23.92) p 
<0.01).  

For the exploratory analyses, to test whether social anxiety was related to task 
performance, two repeated-measures ANOVA were performed. However, there was no 
interaction effect of trial type and condition on social anxiety for accuracy (F 1,17 = 1.76, p = .25) 
or response times (F 1,17 = 1.32, p = .39).  
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Table 2. 

Behavioral results of the social flanker task.  

 Accuracy 

 Congruent  Incongruent  
Condition     
Peer .98 (.02)  .81 (.16)  
Alone .97 (.03)  .81 (.14)  
Total .98 (.02)  .81 (.15)  
     
 Response time (ms) 

 Congruent Incongruent 

 Correct Error Correct Error 
Condition     
Peer 424.19 (59.16) 430.92 (260.37) 499.45 (74.92) 432.73 (116.84) 
Alone 425.37 (56.96) 316.69 (239.94) 503.95 (71.58) 435.73 (109.75) 
Total 424.82 (55.82) 425.88 (224.22) 502.44 (69.61) 433.24 (102.83) 

Note. Standard deviation is presented in parentheses.  

Table 3.  

fMRI whole brain results: error vs correct in incongruent trials. 

  Talairach coordinates 

Region Voxels x y z 

BI x social anxiety x condition  -    

BI x condition -    
Social anxiety x condition 

Left middle temporal gyrus 
Left middle cingulate cortex 
Left middle cingulate cortex 
Right precentral gyrus and right middle cingulate cortex 

 
75 
60 
60 
47 

 
38.8 
16.2 
18.8 
-21.2 

 
38.8 
36.2 
18.8 
11.2 

 
1.2 
26.2 
36.2 
41.2 

BI x social anxiety -    
Condition 

Right middle cingulate cortex 
  
129 

 
-21.2 

 
31.2 

 
33.8 

BI -    
Social anxiety -    

Note: Cluster contiguity threshold = 43 voxels. Abbreviations: ME = main effects; BI = behavioral 
inhibition 
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fMRI results  

Table 3 shows the results of the whole brain analyses. There were no regions 
identified in the hypothesized three-way interaction between infant BI, social anxiety and 
condition on brain activity, p > 0.001. 

Four regions, the left middle temporal gyrus, two regions of the left middle cingulate 
cortex and the right precentral gyrus/right middle cingulate cortex, emerged for the condition 
and social anxiety interaction, shown in Figure 4a-d. For all regions, higher anxiety scores 
were related to more activation during the processing of correct vs. error trials in the social 
condition. Also, higher social anxiety scores were related to more during the processing of 
error vs correct trials in the alone condition. The slopes of the associations were, however, not 
significantly different from 0 (for the social condition: bs < -.12, SEs < .06, ps > .07, for the alone 
condition bs < 2.47, SEs < 1.62, ps > .14). 

There was a main effect of the condition on activity in the right middle cingulate 
cortex (Figure 3). Participants showed more activation in the correct vs error trials for the 
social condition compared to the alone condition. 

Figure 3 

Main effect condition of the social flanker task on activation in the right middle cingulate cortex. 
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Figure 4  

A. Condition by LSAS effect on the left middle temporal gyrus; B. Condition by LSAS effect on the left 
middle cingulate cortex; C. Condition by LSAS effect on the left middle cingulate cortex; D. Condition 
by LSAS effect on the right precentral gyrus and right middle cingulate cortex.  
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Discussion 

The purpose of this study was to examine the associations between infant BI, self-
reported social anxiety, and social error processing by the brain during adulthood. Because 
infant BI is an important predictor of the development of social anxiety, we expected that 
infant BI would be associated with self-reported social anxiety nearly 30 years later in life. 
However, we did not observe this relationship in the current study. A secondary aim of this 
study was to investigate social error processing in the brain, assessed by the social flanker task 
during fMRI. On a behavioral level, we observed a traditional congruency effect on accuracy, 
but not on response times. At the neural level, we found a main effect of condition on the 
activity of the right middle cingulate cortex. Next, we investigated the association between 
infant BI and social anxiety on the social error processing by the brain. We observed an 
interaction effect of task condition with social anxiety on the brain activity in the left temporal 
gyrus, left middle cingulate cortex and right precentral gyrus, and right middle cingulate 
cortex during error processing. Finally, contrary to our expectations, we did not observe an 
association between infant BI on social error processing by the brain, nor a three-way 
interaction between infant BI, social anxiety and condition on error processing by the pgACC.  

In children with anxiety disorder, a three-way interaction effect of social anxiety on 
social error processing was observed in the pgACC. The social flanker was originally designed 
for EEG studies (Barker et al., 2015), with the intention of studying the fast temporal dynamics 
of error and feedback processing. Although we made accommodations to the task to ensure 
reliable BOLD signals, it is possible that social error processing is too fast to be detected by 
fMRI. Furthermore, finding no association between flanker task performance and social 
anxiety scores is not uncommon in experiments and has been observed previously using this 
version of the task (Barker et al., 2015; Buzzell et al. 2017; Smith et al., 2019). We also did not 
find an association between infant BI and social anxiety and infant BI and (social) error 
processing, despite prior reports (Jarcho et al., 2013; Smith et al., 2019; Tang et al., 2020). A 
previous study with the same sample (Tang et al., 2020) did find a relation between infant BI 
and adult social anxiety. More participants were included in this study, not all of them were 
able to participate in the current fMRI study. Therefore, it is likely that there was insufficient 
statistical power to detect the relation between infant BI and adult social anxiety in the current 
sample. Finally, it is possible that infant BI does not influence behavioral performance or error 
processing directly, but rather indirectly through other cognitive control resources (e.g. 
attention, self-control) that performance monitoring elicits (Henderson et al., 2015). 

In the current study, we found an interaction between condition and self-report social 
anxiety in activity during error processing in the temporal gyrus and middle cingulate cortex 
(MCC). Social anxiety was related to more error-related activity during the alone conditions 
and more correct-related activity during the social conditions was observed for these regions. 
Activity in the temporal gyrus has previously been associated with the processing of sounds 
(Mesgarani et al., 2014) and the processing of social concepts and processes (Aldolphs, 2001; 
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Iacoboni et al., 2004; Satpute & Lieberman, 2006; Zahn et al., 2007). Impairments in the left 
middle temporal gyrus have been found in patients with social anxiety disorder when 
compared to healthy controls (e.g., Goldin et al., 2014; Yun et al., 2017). The impairments 
affected the social-affective communication network and were related to the emotional 
reactivity and social evaluation in social contexts. Indeed, the heightened orientation and 
attentional processes that are elicited during communication and social interactions are 
related to the social fear that is observed in patients with social anxiety (Heeren & McNally, 
2016). Thus, considering our findings, the pattern of activity found in the temporal gyrus could 
suggest heightened attentional control in the social condition, related to processing of 
potentially socially salient information by the participants. This was reflected in the degree of 
social anxiety experienced by the participants.  

We observed more activity in the right MCC in correct vs. error trials in the social 
condition compared to the alone condition. Additionally, we observed an interaction between 
the condition and social anxiety in the left MCC, where higher social anxiety scores were 
related to more error-related activity in the alone condition and more correct-related activity in 
the social condition. In general, the MCC is involved in cognitive control activities in healthy 
individuals (Stevens et al., 2011), which explains the activity during error trials in the alone 
condition. In addition, the MCC is involved in the processing of social information. For 
example, the MCC has been implicated in social decision making during social interactions 
(Apps et al., 2013b). Specifically, the MCC is involved in predicting and monitoring the 
decisions as well as tracking the outcomes of decisions, for positive unexpected outcomes 
(Apps et al., 2013a). Furthermore, the gyral surface of the ACC, which is connected to the MCC, 
appears to be predictive of the connectivity between the dorsomedial prefrontal cortex and the 
temporoparietal junction, regions that are responsible for social information processing 
(Balsters et al., 2017; Balsters et al., 2013). The initial finding of MCC activity in correct trials 
during in the social condition in our study could be indicative of the processing of social 
decisional making. 

The directionality of the condition effect (more activity during correct trials in the 
social condition) observed here was unexpected. Previous EEG studies showed more error-
related brain activity in the social condition (Barker et al., 2015; Buzzell et al., 2017). However, 
the studies Barker et al. (2018) did not find effect of condition in error and correct related brain 
activity. The authors state that this finding could be due to an age-related effect on the ERN, as 
they did find the more error-related activity the social condition for younger vs. older 
adolescent girls. This observation can be explained by the enhanced social motivation typical 
for adolescence, corresponding with heightened neural sensitivity to pay attention to social 
cues (Crone & Dahl, 2012). Likewise, it is possible that the directionality observed in the 
current study is due to chance (based on the small sample size). A replicating in a larger 
sample of this design and task can explain the findings of the current study.  
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On the other hand, the increased activity during correct trials in the social condition 
could reflect the goal-directed effort during social decision making (Contreras-Huerta et al., 
2020). In this case, the increased activity is the response to making the “correct choice” in the 
presence of peer observation. Another possibility is that the observed activity in the MCC 
corresponds to correct-related processing. The response event-related potential correct-related 
negativity is (CRN; Ford, 1999), is studied mostly in EEG studies. Because the CRN is observed 
during correct choices, in the same latency window and electrode sites (Fz and FCz) as ERN, we 
assume that neural activity in the ACC drives the CRN. However, the amplitude of the CRN is 
thought to reflect the reduced certainty of the correct choice (Pailing & Segalowitz, 2004; 
Scheffers & Coles, 2000) and also appears during error processing (Coles et al., 2001; Vidal et 
al., 2000). In addition, an increase in the CRN has been attributed to overactive performance 
monitoring during correct behavior (Bartholow et al., 2005; Endrass, et al., 2010; Hajcak & 
Simons, 2002). Based on these definitions of the CRN, it is possible that participants were more 
uncertain about their choices due to the ‘social pressure’ they experienced during the social 
condition and responded with increased monitoring of their responses through MCC activity, 
even though it was a correct choice. It is unclear whether the CRN is affected by social factors 
or social anxiety, as most CRN studies to date have used non-emotional attentional control 
tasks (Michael et al., 2021). Only one study (Endrass et al., 2014) found an increased CRN 
(together with ERN) for patients with social anxiety disorder vs. healthy controls, suggesting 
that social fear affects both performance monitoring components. In summary, although 
speculative, the relation between social anxiety and correct-related activity in the MCC might 
reflect an overreactive performance monitoring system that is triggered during the processing 
of social decisions.  

There are several limitations to this study. First and most evident is the small sample 
size due to the attrition and eligibility of participants. Attrition is due to the longevity of this 
study: after 30 years, most of the participants moved out of the area or changed contact 
information. The small sample size resulted in, what is most likely resulted in underpowered 
statistical analyses. Eligible participants who were excluded due to medication use, including 
SSRIs, contributed to the smaller sample size. Although medication use may influence 
cognitive processes, it raises an interesting point of discussion. It is possible that eligible 
participants are taking medication because they have developed a disorder such as anxiety, 
and that temperament played a role in this development. However, the excluded participants 
did not differ significantly in infant BI from the included participants. To overcome this 
limitation, the inclusion of patients with a clinical diagnosis and larger sample sizes are 
recommended. The second limitation is the degree of deception success in the current version 
of the social flanker task. This version of the social flanker task has not been performed by 
adults in MRI studies. Although most of the participants (of whom we documented the 
deception rate) believed they are being observed, some participants reported that they ‘could 
not hear’ the peer during the introduction. In future MRI studies, we propose to ensure a 
successful deception of the social condition. This can be done by ‘real-life’ introduction of the 
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peer prior to the experiment or reciprocal evaluation of performance prior to experimentation 
(e.g., through real-time social interaction tasks; Weinberg et al., 2021). 

In this unique 30-year longitudinal neuroimaging study, we administered the social 
flanker task in adults using MRI, where we found an association between social anxiety and 
social observation on the correct-related activity. This study provides initial insight into 
“correct” behavior in social contexts: we therefore encourage future research to further 
investigate underlying mechanisms that drive this behavior in EEG studies. The current study 
used prospective design, which may have provided important insights into the process and 
influences of early markers on later in life processes. This study may serve as model for other 
prospective research designs, where the availability of clinical, self-report, behavioral, and 
brain measures could provide for a holistic view on social error processing. For now, we can 
conclude that social error processing in adults is related to social anxiety and is processed by 
the middle cingulate cortex of the brain.
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Chapter 6 

 

 

General Discussion 
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The central focus of the current dissertation was the role of performance monitoring 
in psychopathology, measured at behavioral and neurophysiological levels. The results of the 
two longitudinal studies and the synthesis of existing literature in the meta-analysis and 
narrative provide unique contributions to the research on the role of performance monitoring 
in the etiology of psychopathology.  

Summary of Findings: The Role of Performance Monitoring in Psychopathology 

The first central question was to determine the role of error processing in 
externalizing psychopathology. To this end, two reviews were written examining two error-
related brain measures. At the time, there was no meta-analysis that synthesized research on 
the ERN and Pe nor did they include samples of children with externalizing problems. The 
results in Chapter 2 indicate that the ERN and Pe were systematically diminished in studies 
that primarily examined error processing in adults and children with ADHD and adults with 
clinical and subclinical addiction. The selected moderators did not contribute to the observed 
heterogeneity, except for the type of experimental task that was used to assess performance 
monitoring in the Pe meta-analysis. Studies using the go-nogo task show greater differences in 
the Pe between externalizing samples and healthy controls than studies using other 
experimental tasks. Notwithstanding the observed threat of small sample bias (significant for 
both ERP’s), the lack of unpublished studies in the analyses, and the inconclusive p-curve 
analysis for Pe to assess p-value reporting, both meta-analyses consistently show reduced error 
processing in externalizing samples, suggesting impaired anterior cingulate cortex 
functioning.  

In Chapter 3, I used the evidence from studies of error processing in externalizing 
disorders to discuss whether error processing can be considered a biomarker for this spectrum 
of disorders. Biomarkers are reliable, accurate, discriminative measures of biological 
substrates sensitive enough to be observed in a heterogeneous disorder sample. They inform 
researchers and clinicians about etiology, diagnosis, and prognosis. In the review, I show that 
although EEG correlates of error processing can be considered biomarkers for disorders such 
as addiction (Luijten et al., 2014), psychopathy (Vallet et al., 2021), and ADHD (Kaiser et al., 
2020), there are several disorders from the externalizing spectrum underrepresented 
(discussed below). There is not only evidence for error processing as a biomarker, but error 
processing may explain individual differences in other cognitive domains, severity, 
comorbidity, and treatment status/outcome. Future research is needed to determine whether 
error processing is a cause or effect of psychopathology and whether brain stimulation can 
modulate error processing impairments. 

Very few studies have access to large enough sample sizes and utilize longitudinal 
designs that are necessary to examine performance monitoring at the behavioral level in 
children across development. In Chapter 4, I explored flanker response times trajectory and 
test the association of the response time trajectory with the trajectory of teacher-reported 
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problem behavior in a unique large sample of Dutch elementary school children with repeated 
measures of flanker performance. An improved trajectory of response time was observed, 
evidenced by a piecewise reduction in response times of all trial types. We also observed 
improved accuracy, reduced post-error slowing, and a strategy of equalizing accuracy and 
speed as children aged. There were several positive associations observed between the 
trajectory of response time and the trajectory of problem behavior (excluding conduct 
problems). A faster response time at age 7, as well as a faster rate of decrease in response time, 
was positively associated with a corresponding decrease in anxiety, depression, ADHD-related, 
and oppositional defiant problem behaviors. 

 In Chapter 5, we examined the long-term association between infant behavioral 
inhibition and self-reported social anxiety in adulthood. Also, we investigated if the two 
concepts together were associated with brain and behavioral measures of social information 
processing in adulthood was examined. To study this, we piloted a social version of the flanker 
task during MRI to identify which areas are involved during social error processing (effect of 
peer observation vs. alone during performance monitoring) in adults. Results show that the 
middle cingulate cortex is activated during social error processing. In addition, there was an 
interaction effect of condition and social anxiety in the left temporal gyrus, left middle 
cingulate cortex, and right precentral gyrus. The activity in these regions was most 
pronounced during the correct trials in the social condition. The results indicate specific brain 
regions to be involved during the increased performance monitoring, in response to ‘doing 
well’ in front of the peer. However, there was no relationship between infant BI and adult 
social anxiety scores, and there was no effect of the social manipulation on the behavioral 
measures of the flanker task. The results are preliminary, based on a small sample size. Still, 
pending improvements for the social manipulation, the social flanker task may be a valid 
paradigm to further investigate social information processing, especially to shed light on how 
performance monitoring is processed by the brain and how this is related to psychopathology.  

Interpretation of Diminished Error-Related Negativity in Externalizing Psychopathology  

Traditionally, EEG researchers interpret results by referring to the underlying brain 
networks driving ERP’s. However, truly understanding how the neurophysiological 
components relate to observable behavior (which is characteristic of the disorder) remains 
challenging. Occasionally, researchers relate ERP to task behavior or disorder symptoms 
(serving as proxies for disorder-specific behavior). In addition, the functional significance of 
ERN and Pe may be explained by a variety of theoretical approaches. Although not a primary 
outcome of this dissertation, Table 1 provides an overview of propositions that help interpret 
performance monitoring results from cognitive control studies. I will discuss the behavioral 
implications of reduced error processing deficits in externalizing psychopathology in the 
following sections.   
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Table 1. 

Overview of propositions relevant for explaining performance monitoring outcomes in cognitive control studies* 

Theory/ 
Hypothesis 

Author Cognitive 
Domain 

Correlates Brain 
region 

Tasks Sample§ Short description Further 
reading 

Conflict 
Monitoring 
Theory 

Botvinick et 
al. 2001; 2004; 
Yeung et al. 
2004 

Conflict 
monitoring 
Inhibition 

ERN 
FRN 
N2 
PES 
PIA 

ACC 
PCC 
PFC 

Flanker 
Go-Nogo 
Simon 
Stroop 
 

Healthy 
Internalizing 
Externalizing  

Explains the detection and processing of 
conflicting information (discrepancy between 
error and correct response). The ACC has an 
evaluative (top-down control) role. ERN reflects 
the response of conflict on error trials. 

Lo, 2018; 
Yeung et al. 
2004; Dignath 
et al. 2020 

Reinforcement 
Learning 
Theory 

Holroyd & 
Coles, 2002 

Error 
monitoring 
Motivation 
Reward. 

ERN 
Dopamine 

Basial 
ganglia 
PFC  
MFC 
ACC 
Striatum 

Probabilistic 
learning 
Task 
switching 

Healthy 
Addiction  
ADHD 

Error-making calls upon the mesencephalic 
dopamine system to ensure a negative 
reinforcement learning signal. Errors serve to 
‘train’ the ACC to direct upon the motor system 
(also referred to as the response selection 
model).  

Friedman & 
Robins, 2022 

Adaptive 
Orienting 
Theory 

Wessel, 2018 Error 
monitoring 
Orienting 
Inhibition 

PES 
ERN 
N2 
 

aMCC Flanker 
Go-NoGo 
Simon 
Stop Signal 

Healthy Unexpected task events (i.e. errors), trigger 
several processes, including the inhibition of 
task behavior and orientation attentional focus 
to the violation, in order to facilitate adaptive 
behavior. 

Frömer & 
Shenhav, 2022; 
Śmigasiewicz 
et al. 2020 

Orienting 
Theory 

Notebaert et 
al. 2009 

Error 
monitoring 

PES MFC Flanker 
Go-NoGo 
Simon 
Stop Signal 

Healthy  Assumes that errors are infrequent events that 
capture one’s attention. 

 

Mismatch 
Theory 

Bernstein et 
al. 1995; Coles 
et al. 2001; 
Falkenstein et 
al. 1991 

Conflict & 
Error 
monitoring 

N2 
ERN 
FRN 

aMCC Any two-
choice 
reaction 
tasks 

Healthy 
 

Servers as the error detection system: the 
sensitivity to the discrepancy between the 
decision (error response) and the correct 
response. Note: the presence of CRN weakens 
this theory 

 

Motivational 
Significance 
Theory 

Gehring et al. 
1993; Hajcak & 
Foti, 2008 

Error 
monitoring 
Self-
regulation 

ERN 
Pe 

ACC Affective 
manipulatio
ns of choice 
tasks  

Healthy 
Internalizing 
ADHD 

Assumes that errors are motivationally salient 
and trigger startle/arousal, making errors 
significant. Also accounts for individual 
differences. 

Hajcak et al. 
2005 

 

Predicted 
Response-
Outcome Model 

Alexander & 
Brown, 2010 

Error 
monitoring 
Self-
regulation 
Reward 

ERN 
Cognitive 
control 
SAT 
N2 

mPFC 
ACC 

Change 
signal 
Flanker 
two-armed 
bandit  

Animal 
Healthy 
 

A cognitive and probabilistic framework that 
incorporates the response and outcome by the 
ACC, based on reinforcement learning. Builds 
forth on the Error likelihood Prediction 

Brown & 
Braver (2005) 

Thread 
Sensitivity 

Weinberg et 
al. 2016 

Error 
monitoring 

ERN ACC Two-choice 
reaction 
tasks, with 
feedback or 
punishment 

Healthy 
Anxiety 

Errors are motivationally salient and represent 
aversive and threatening events that trigger a 
defensive response  

Cole et al. 
2022; Meyer et 
al. 2020 
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Affective 
Processing 
Hypothesis 

Overbeek et 
al. 2005  

Error 
monitoring 

Pe 
PES 

rACC 
cACC 
aIC 

Flanker 
Go-NoGo 
Oddball 
Simon 
Stop Signal 

Healthy  The Pe reflects the neuroaffective response of 
the brain. The response could be seen as 
“carrying/feeling” for the error 

Dignath et al. 
2020; Harsay 
et al., 2012 

Error-
Awareness 
Hypothesis 

Nieuwenhuis 
et al. 2001 
Ullsperger et 
al. 2010 

Error 
monitoring 

Pe 
PES 
Autonomi
c nervous 
SAT 

ACC 
aIC 
rCC 

Error 
signaling 
Flanker  
Go-NoGo 
Simon 
Antisaccade 

Healthy 
Internalizing 
Externalizing  

Conscious knowledge of mistaken decisions. Pe 
amplitude reflects either directly error 
awareness or lead to the processes of becoming 
aware of the error  

Overbeek et 
al. 2005 

Behavior-
Adaptation 
Hypothesis  

Gehring et al. 
1993 
Nieuwenhuis 
et al. 2001 

Error 
monitoring 

Pe 
PES 
PIA 

ACC 
CC 
MFC 

Flanker  
Go-NoGo 
 

Healthy 
Externalizing 

Change in behavior is conditional on the error, 
evidenced by change in strategy, reaction time 
or accuracy  

Overbeek et 
al. 2005 

Dual 
mechanism of 
control 

Braver, 2012 Cognitive 
control 

NA PFC 
ACC 
 

AX-CPT 
Stroop 
Choice 
reaction 

Healthy 
Internalizing  
Externalizing  
 

Assumes reactive vs. proactive mechanism of 
control. Where error detection is a reactive 
response and conflict monitoring and error 
likelihood estimation are proactive systems 

 

Diffusion Drift 
Model 

Radcliff & 
McKoon, 2008  

Decision-
making  

NA 
PES 

NA Any two-
choice 
reaction 
tasks 

Healthy 
 

Decision-making involves the accumulation of 
noisy evidence in favor of one choice over the 
other, then the evidence for a particular choice 
‘drifts’ over a decision threshold, which 
determines the final choice. 

Dutilh et al. 
2012; 
Desender et 
al. 2021; 
Mattes et al. 
2022 

Accumulation 
Account 

Steinhauser & 
Yeung, 2012 
 

Error 
monitoring 

SAT 
Pe 

ACC 
SMA 

Discriminati
on 
Two-choice 
reaction  

Healthy The decision process (output) based on 
sufficient accumulated evidence on error 
commission (input) leading to being aware of 
the error.  

Lenzoni et al. 
2022; 
Steinhauser & 
Yeung, 2010 

Post-Decisional 
evidence 
accumulation 

Desender, 
Ridderinkhof, 
& Murphy, 
(2021) 

Performanc
e 
monitoring  

Pe 
PES 

rCC 
aIC 
ACC 

Two-choice 
reaction  

NA The Pe is the neural marker for the evidence 
accumulated after choices are made. Error 
detection is “achieved” when enough 
confidence is reached.  

Damasco et al. 
2022; Yeung & 
Summerfield, 
2012 

Note. There are more cognitive control theories available than presented here. The theories included in the current overview are most relevant to performance monitoring, while I 
acknowledge they are also relevant for other cognitive processes and brain regions, depending on task manipulations. Also, they differ in perspective and assumptions. Some 
theories might be inter-related (e.g. Reinforcement and mismatch). §Samples stated under this column have been subjected to explaining performance monitoring results. When 
internalizing and externalizing is stated under the column sample, many disorders in this spectrum are implicated.  
Abbreviations: ACC = anterior cingulate cortex; PCC = posterior cingulate cortex; rACC = rostral ACC; cACC = caudal ACC; PFC = prefrontal cortex; MFC = medial frontal cortex; 
mPFC = medial prefrontal cortex; aMCC = anterior midcingulate cortex; SMA = supplementary motor area; aIC = anterior insula cortex; rCC = rostral cingulate cortex; CC = 
cingulate cortex; PEA = post-error improvement in accuracy; ERN = error-related negativity; FRN = feedback-related negativity; CRN = correct-related negativity; ADHD = 
attention-deficit hyperactivity disorder; SAT = speed-accuracy tradeoff.  
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The ERN is one of the most studied components of performance monitoring and 
appears to play an important role in both internalizing and externalizing disorders. There are 
three relevant theories that help explain the implication of reduced ERN for externalizing 
psychopathology. According to the Conflict Monitoring Theory (Botvinick et al., 2004), a conflict 
is the erroneous response vs. the correct response. The reduced ability to process errors 
suggests a reduced anterior cingulate response to evaluating conflicting information. In other 
words, a patient with externalizing disorder may have problems identifying and evaluating 
correct versus incorrect choices. This explains why patients with externalizing 
psychopathology exhibit maladaptive behaviors. In the light of the Reinforcement Learning 
Theory (Holroyd & Coles, 2002), where error triggers the dopamine system to ensure learning 
from the error, reduced error processing suggests that this system is affected in patients with 
externalizing psychopathology. This helps to explain why patients fail to ‘learn’ from their 
mistakes, hindering or prohibiting them from being able to change their behavior. Another 
relevant framework to explain error processing and subsequent behavior is the Adaptive 
Orienting Theory (Wessel, 2018). The theory suggests that unexpected task events (i.e., errors) 
elicit a series of processes that orient attention toward the error as well as inhibit current 
behavior. The reduced ability to improve performance after error making (Franken et al., 2007) 
and the reduced PES observed in disorders such as addiction (faster response times after 
errors; Sullivan et al., 2019) provides initial support for this theory. On the other hand, the role 
of N200 in externalizing samples is still debated (e.g., inconclusive in ADHD: Kaiser et al., 2020; 
mixed in addiction: Parvaz et al., 2011). In sum, the reduced ERN in externalizing samples 
suggests a diminished response of the brain to an unexpected or conflicting decision and a 
failing system of behavioral adaptation following the erroneous decision. All different 
theoretical perspectives share the involvement of the ACC. Therefore, it is recommended to 
continue to investigate the link between the ERN, ACC, and behavior adaptation to substantiate 
the different theoretical perspectives with empirical data.  

Chapter 2 and 3 describe considerable heterogeneity of ERN in externalizing samples, 
which requires further research. There are several potential causes for the observed 
heterogeneity. First, the heterogeneity in ERN could be due to the heterogeneity of symptoms 
and behavior within clinical disorders. ERN would thus also be heterogeneous and at the same 
time disorder specific. For instance, there was a larger ERN reduction for clinical addiction 
than for subclinical addiction in the meta-analysis. This suggests that the degree of error 
processing deficits relates to the severity of symptoms for a disorder. To address this, the 
relationship between the ERN and the degree of disorder-specific symptoms/behavior should 
be examined in more depth (e.g., Baldwin et al., 2015; Meyer & Hajcak, 2019). Second, other 
disorder-related variables that influence the ERN, such as age of onset, comorbidity, and 
medication use, should be examined to explain heterogeneity. Third, the heterogeneity in ERN 
can be the result of sample variables (e.g., age, gender). Finally, heterogeneity can be the 
result of the way the ERN is captured. Concerning the last cause, the “absolute” value of the 
ERN is sensitive to how it is measured (experimental paradigm; Meyer et al., 2013), how the 
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EEG signal is pre-processed, and how it is calculated (Boen et al., 2021; Clayson, 2020; Klawohn 
et al., 2020).  

Besides error-related ERP’s, studying EEG signal oscillations through time-frequency 
(TF) analyses can give additional insight in the neural underpinnings of error processing. The 
examination of oscillatory patterns includes the decomposition of the EEG signal into different 
frequency bands. They are modulated by the cognitive processes or events (therefore, they are 
referred to as event-related oscillations: ERO’s) and inform goal-directed behavior (e.g., Buzzell 
et al., 2019; Cooper et al., 2019; Valadez & Simons, 2017). Where traditional ERP requires the 
signal to be synchronous, disregarding any non-phase-locked signal (Luck, 2014), TF 
distinguishes between amplitude and neural oscillations (including non-phase-locked signals). 
Also, TF analyses allow for the strength of the signal and the study of phase synchronicity 
within trials and electrode sites. Theta (Cavanagh & Frank, 2014; Cohen & Donner, 2013) and, 
to a lesser extent, delta (more reflective of decision-making processes; Fischer et al., 2018), and 
alpha (Van Driel et al., 2012) are the frequency bands that appear to be characteristic of 
performance monitoring and error-related brain activity in healthy participants. There are 
initial reports on performance monitoring-related spectral oscillation differences that have 
been observed comparing externalizing samples with healthy controls. For instance, reduced 
power in theta is observed in ADHD (Baijot et al., 20172) and reduced delta oscillations in the 
acute administration of an opioid (Pfabigan et al., 2021). However, intact performance 
monitoring is observed in externalizing samples (e.g., Bernat et al., 2011). Currently, our lab is 
investigating whether there are diminished ERO’s in substance use (Stam et al., 2023) and other 
addictions (Lutz, Franken, & Steele, in prep).  

Moving forward, additional research is encouraged to further investigate 
heterogeneity in ERN and spectral oscillations in externalizing samples. This will deepen our 
fundamental understanding of the underpinnings maladaptive behavior in disorders. 

Making Sense of the Error Positivity in Externalizing Disorders.  

The late positive potential of error processing Pe was a central measure studied in 
Chapters 2 and 3. Despite the growing interest in this ERP, there is, to this date, still debate on 
how Pe is linked to behavior. The Pe and ERN are separate ERP’s (Dhar, & Pourtois, 2011; Di 
Gregorio et al., 2018; Endrass et al., 2007; Falkenstein et al., 1991; Nieuwenhuis et al., 2001) and 
the ERN theories may not apply to Pe (e.g., dopamine does not influence the Pe; De Bruijn et 
al., 2004). For now, I interpret the results from Chapter 2 with the available propositions 
(Desender et al., 2021; Falkenstein, 2004; Overbeek et al, 2005; Steinhauser & Yeung, 2010).  

According to the Error-Awareness Hypothesis, the Pe reflects the consciousness of the 
mistake (Godefroid et al., 2016; Nieuwenhuis et al., 2001). There is no consensus on whether 
the Pe represents error awareness or the signal that leads to error awareness. Yet, several 
studies point to Pe as a representation of error awareness (Boldt & Yeung, 2015; Hester et al., 
2005; Kirschner et al., 2021) or that Pe is larger when errors are perceived (Nieuwenhuis et al., 
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2003). A reduced Pe in externalizing disorders indicates that patients are less likely to be 
conscious of their errors, preventing subsequent corrective behavior. Indeed, EEG and MRI 
studies confirm that error awareness is reduced in patients with externalizing 
psychopathology, driven by hypoactivation in the ACC in addiction (Hester et al., 2009; 
Ridderinkhof et al., 2002) and in ADHD (Geburek et al., 2013). In addition, the anterior insular 
cortex (AIC; Ullsperger et al., 2010) could play an important role, as error awareness ‘activates’ 
the ‘salience network’ in the AIC through arousal, which subsequently enables task adaptation. 
Alternatively, the Affective-Processing Hypothesis suggests that a reduced Pe constrains the 
affective appraisal of the event. If this is the case, an individual with externalizing 
psychopathology fails to process the potential negative consequence and cannot learn or 
change behavior. It is unclear whether an individual ‘doesn’t care’ about errors or that they 
simply ‘can’t feel’ for errors. According to the Behavioral-Adaptation Hypothesis, the Pe is 
dependent on the behavioral change after the error (measured by post-error slowing). Given 
the reduced Pe and PES in patients with ADHD (Balogh & Czobor, 2014) and addiction (Sullivan 
et al., 2019), this could imply that the signal to “slow down to change behavior” is affected. 
Last, although not stated as a hypothesis (due to the similarities with the task-related P300), a 
Pe amplitude can be related to the motivational significance of an error, the activation of the 
noradrenergic system or the update of the information model of the context of the error. If this 
is the case, patients with externalizing disorders have a reduced noradrenergic response of the 
brain toward errors, dampening the alertness and attention triggered by errors. Since P300 has 
systematically been found to be reduced in patients with externalizing disorders (Patrick et al. 
2006; addiction: Euser et al., 2012; Iacono & Malone, 2011; ADHD: Metha, 2020), patients have a 
reduced capacity to assess the significance of the stimuli presented and to divide appropriate 
attention processes to focus on task-related stimuli. Finally, a more recent paper suggests that 
the Pe may reflect the “post-decisional evidence accumulation” (based on the diffusion drift 
model; Desender et al., 2021). This post-decisional response triggers metacognitive experiences 
such as error detection and confidence in the decision, which in turn stimulates next-trial 
adjustment.  

An interim conclusion is that a reduced Pe in patients with externalizing 
psychopathology is indicative of reduced error awareness, evaluation of the error, or reduced 
initiation of behavioral adaptation following the error. Currently, research on the suggested 
hypotheses and innovative approaches and their considerations is ongoing (Desender et al., 
2021; Overbeek et al., 2014; Wessel, 2012). Therefore, to properly understand the Pe results 
observed in the field, I encourage the continuation of finding empirical evidence to validate 
these hypotheses. For now, we must be aware that the absence of theory-driven work in 
investigating Pe in clinical samples can trigger questionable research practices, such as 
selective reporting of significant results (for an application in ERN research, see Clayson et al., 
2020). This is evidenced by the lack of hypotheses stated in studies as discussed in the 
supplementary materials of the meta-analysis. Still, we need to gather more information on the 
Pe in clinical samples to help us understand the framework at hand. Open-science practices 
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(e.g. pre-registration) may help in this attempt (Paul et al., 2021). Therefore, more research on 
its neural origin, its psychometric/discriminant properties (Pe vs. P300b or ERN) studies and 
moderators of Pe is highly recommended.  

Under-represented Disorders in the Externalizing Spectrum 

Most research on performance monitoring in externalizing psychopathology has been 
conducted in individuals and patients with ADHD and substance use problems and disorders. 
There are three externalizing disorders that are currently under-represented in performance 
monitoring research. The section below discusses why performance monitoring may be 
informative to the problematic behavior observed in the three disorders: behavioral addiction 
(BA), and conduct disorders and oppositional defiant disorder, discussed together. 

Behavioral Addiction. A promising yet dire avenue that performance monitoring and 
cognitive control research should turn to is the field of behavioral addiction disorders. There 
are initial investigations on the ERN and Pe in internet addiction (Zhou et al., 2013), and other 
‘addictive’ behavior, such as food intake (Franken et al., 2018), gaming (Littel et al., 2012), and 
binge watching (Kilian et al., 2020). Error processing was reduced in individuals with 
excessive/addictive internet gaming and food intake, as evidenced by a reduced ERN and more 
error-making than healthy controls. However, other studies show that the ACC is more active 
in individuals with internet addiction disorder than in healthy controls (Dong et al., 2013), and 
that error processing is not impaired in individuals who frequently binge watch (Kilian et 
al.,2020), or game (Luijten et al., 2015). In addition, other brain regions like the precuneus, 
putamen, and insula may be involved in error processing, as shown in a study on food 
addiction (Hsu et al., 2017). Clearly, further investigation and replication are needed to 
establish the role of performance monitoring in BA.  

Besides the inconsistency in the initial reports, there are other reasons to investigate 
cognitive control in BA. First, the observed maladaptive behavior in BA has similarities with 
the compulsive and obsessive disorder or substance use disorder (repetitive behavior, loss of 
control, and preoccupation). Since performance monitoring is affected differently in OCD and 
addiction, it is interesting to see what pattern is specific for BA. In addition, this can inform the 
notion that shared cognitive dysfunctions contribute to (comorbid) disorders, the philosophy 
of the Research Domain Criteria (discussed in more detail in a section below). Secondly, the 
prevalence and incidence of clinical behavioral addictions such as internet gaming disorder 
and pathological gambling disorder are alarming. Furthermore, it is evident that problematic 
media use, sex, food, shopping, exercise, and other addictive behavior may have a great impact 
on individuals and societies. This raises the necessity to “catch up” on how cognitive 
dysfunction drives maladaptive behavior in BA. Last, BA or problematic addictive behavior 
affects children and adolescents, providing the opportunity to have a developmental 
perspective on the role of cognitive control in behavioral addiction (Derevensky, 2019). To 
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conclude, the knowledge and best practices that researchers have gained from cognitive 
control research should be applied to BA samples sooner rather than later.   

Externalizing disorders in children. Two externalizing disorders are under-
represented in performance monitoring research. Conduct disorder is characterized by 
persistent antisocial behavior that violates the norms and rights of others (American 
Psychiatric Association, 2022). Oppositional defiant disorder is characterized by hostile, 
negative, aggressive, and uncooperative behavior towards others (American Academy of Child 
and Adolescent Psychiatry). Consequences of both disorders affect the individual, including 
increased risk for substance use and mental health problems, as well as the society: increased 
risk for criminal behavior. It is therefore essential to improve our understanding of what drives 
maladaptive behavior and develop possible treatment options (e.g., brain stimulation). For 
both disorders, deficits in several cognitive control networks and reduced executive 
functioning have been observed, driven by hypoactivation in the ACC, prefrontal cortex, and 
caudate (Alegria et al., 2016; Fairchild et al., 2019). Specific performance monitoring studies in 
children are rare. The studies of Hall et al. (2007) and Woltering et al. (2011) show reduced 
performance monitoring related stimuli and response ERP’s. A meta-analysis with adolescent 
and adult samples with elevated psychopathy found reduced ERN and Pe (Vallet et al., 2021). In 
addition, the reduced ERN was driven by impulsive and antisocial traits in individuals with 
psychopathy. Most interestingly, several studies suggested that ERN/Pe can be indicative for 
rearrest (e.g., Steele et al., 2015) and treatment trajectories (Woltering et al., 2011.). This 
demonstrates the potential predictive value of performance monitoring in psychopathology 
and its course.  

Relevance of Performance Monitoring Tasks 

Researchers design experimental tasks as a tool to elicit task behavior and brain 
responses. Relatively simple task adaptations and manipulations to these tasks allow us to test 
for specific hypotheses, as demonstrated with the social flanker task in Chapter 5. Inspired by 
the work in this dissertation, two important recommendations for future research on 
performance monitoring tasks are discussed below.  

The work presented in this dissertation lays out the groundwork to link affected 
performance monitoring to maladaptive behavior. As discussed in previous sections, there are 
several hypotheses for error processing that involve the evaluation of and emotional response 
to errors. It is based on the idea that errors do not (only) trigger arousal but also a valence-
specific effect (Koban & Pourtois, 2014). It has been proposed that the evaluation of errors 
influences behavior because incorrect actions are considered negative and ‘bad’ versus correct 
decisions as positive and ‘good’ (Aarts et al., 2012; 2013). In addition, a considerable overlap 
exists in brain regions involved in error, emotional, and social processing, suggesting a 
potential integrative network that drives behavior (Koban & Pourtois, 2014). Indeed, there is an 
increase in reports investigating the role of emotional response to errors (for a review in 
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healthy samples, see Nuñez-Estupiñan et al., 2022). Although this topic is beyond the scope of 
the current dissertation, moving toward this integrative framework (including the cognitive, 
emotional, and social propositions) on error processing will aid in defining the role of 
performance monitoring in psychopathology.  

Second, traditional performance monitoring tasks have low ecological validity: they 
are designed for a controlled laboratory environment and mimic real-life processes. Although 
task adaptations and innovations are rigorously tested for their face, internal, and construct 
validity, an effort should be made to increase the ecological and external validity of the tasks 
and experiments. This can be done by combining methodologies such as ecological 
momentary assessment (Smith et al., 2019) or the use of virtual/augmented reality (Berger & 
Davelaar, 2018; Parsons & Courtney, 2016). 

The Potential of Behavioral Measures  

Traditionally, behavioral measures are reported in neurophysiological studies to 
‘check’ whether the manipulation or task effect was successful. The remaining analyses focus 
on ERP’s, ignoring valuable information that tasks measures can provide, such as individual 
trial-to-trial changes indicating behavioral changes. In addition, many studies draw 
conclusions on the directionality between amplitude differences and behavioral performance 
outcomes without statistically testing whether the association is present. Below, I present four 
relevant issues and promising avenues on the potential of behavioral measures.  

First, testing the relationship between behavioral indices and neurophysiological 
measures of performance monitoring yields contradicting results. A larger ERN is related to 
longer response times in consecutive trials (Fischer et al., 2016), and both theta oscillations and 
ERN were related to post-error adaptation and slowing (Kalfaoğlu et al., 2018; Valadez & 
Simons, 2017). The association is also found in studies examining single-trial ERN and 
subsequent-trial behavior (Debener et al., 2005; Steinhauser & Andersen, 2019), single-trial 
level ERN predicting PES (Beatty et al., 2020) or linking previous trial theta to trial accuracy 
(Buzzell et al., 2019). On the other hand, other studies did not find any association between task 
behavior and neural correlates (e.g., Adler, 2021; Buzzell et al., 2017). According to the 
extensive review by LoTemplio et al. (2023) on the relationship between ERN and task-related 
behavior (PES and post-error accuracy), the mixed results are due to the involvement of the 
ACC in many cognitive control processes as well as the way the ERN is measured. Although a 
meta-analysis confirms that frontal midline theta and PES are positively related (Cavanagh & 
Shackman, 2015), a debate on whether PES results in behavior adaptation is still ongoing 
(Buzzell et al., 2017; Kirschner et al., 2021; Notebaert et al., 2009). With the knowledge that both 
the ERN/PE (Chapter 2) and PES are affected in externalizing samples (Balogh & Czobor, 2016; 
Sullivan et al., 2019), it is possible to hypothesize that they are related. Yet, to my knowledge, 
this has not been thoroughly investigated in psychopathology, except in anxiety (Cavanagh & 
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Shackman, 2015). By examining these intricate relationships, we can determine if task 
measures are indicative of adaptive behavior.   

Second, it remains unclear to what degree there is a link between task performance 
and clinical measures of disorders. For instance, larger response time variability was related to 
ADHD symptoms (e.g., Epstein et al., 2003). In addiction samples, a meta-analysis (Smith et al., 
2014) confirmed that reduced performance on go-nogo and stop-signal tasks is associated with 
behaviors such as heavy drinking. Examining this link has clinical implications. It can explain 
the individual differences and within-person differences in disorders, which elucidate on the 
high heterogeneity observed in psychopathology (Meyer & Hajcak, 2019). Also, several clinical 
instruments involve the use of performance monitoring tasks and use behavioral indices to 
support clinical diagnosis (e.g., in the Netherlands: the Amsterdamse Neurologische taken, 
ANT, de Sonneville, 1996).  

Third, there are specific trial-to-trial changes in tasks that influence the overall 
behavioral results. Although not discussed in this dissertation, studies on healthy participants 
show that trial-by-trial variables influence task performance and/or neural correlates. These 
variables include but are not limited to the Gratton effect (conflict adaptation due to sequence 
of congruency: Gratton et al., 1992; Clayson & Larson, 2013), cumulative error effect (Valadez & 
Simons, 2017), intertrial intervals (ITI’s; Compton et al., 2017; Ehlis et al., 2018), post-error 
reduction in inference (PERI, Buzzell et al., 2019; Danielmeier & Ullsperger, 2011; Fischer et 
al., 2018), level of noise (Mattes et al., 2023), and relationships between post-error slowing and 
post-error accuracy (Schroder et al., 2020). These effects influence the magnitude of the neural 
correlates and contribute to the heterogeneity of performance monitoring and between-group 
effects, as observed in the meta-analyses in Chapter 2. Although studying trial-by-trial effects 
requires intensive data handling and analysis, investigating trial-by-trial behavioral change 
provides unique insight into the mechanisms of behavior adaptation, and should therefore not 
go unnoticed in future performance monitoring studies. Sharing data and code for (pre-
)processing and analysis through online platforms such as GitHub and Open Science 
Framework will facilitate this endeavor.  

Researchers have focused on grant averages and between-group differences, 
neglecting the structure of ERP data (multiple observations grouped within individuals) and 
the significance of (intra-)individual variability in ERP’s. To deal with the structure of ERP data, 
multi-level analyses have been proposed (Volspert-Esmond et al., 2018; 2023), incorporating 
cross-classified data (e.g., individual factors), or hierarchical data (data nested within 
participants). Exploring intra-individual variability patterns has provided valuable insights 
(Trenado et al. 2019) into maladaptive behavior observed in conditions, for instance in autism 
(Magnuson et al., 2020;). It is based on the notion that neural activity is dynamic (spatial and 
temporal domains) and changes in neural activity within a person can serve as a trait-like 
representation of behavior (Waschke et al., 2021). Multi-level location-scale modeling has 
successfully examined intra-individual variability in ERN in patients with depression, general 
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anxiety, and OCD (Clayson et al., 2022). More specifically, no group differences in ERN were 
found between the clinical groups, contrary to previous studies. However, between-person 
differences in the intra-individual variability of correct and error-trials ERN were found. This 
methodology inspired another study (Lutz et al., 2023 for pre-registration, in prep), with the 
attempt to provide insight into trial-by-trial changes in task behavior and their relationship 
with all performance monitoring ERP’s. The previous- and current trial performance 
monitoring correlates (means and their variances) N2, P3, ERN, and Pe together were able to 
predict current trial behavior (response time and accuracy), controlling for previous and 
current trial type (congruency) and accuracy, within the same participant. The results indicate 
that the participants ‘own’ performance monitoring (neural and task level) best predicts their 
next behavior, an effect that cannot be observed using traditional between-subject approaches.  

In conclusion, behavioral indices of performance monitoring provide an 
understanding of “normal” behavior, but research on how they provide insight into 
maladaptive behavior remains scarce. Future studies can attempt to examine how task 
behavior relates to the neural correlates of performance monitoring, clinical symptoms, trial-
by-trial changes, and intra-individual variability.  

Moving Forward: The Need for Developmental Perspectives and Clinical Applications   

A particular challenge in studying cognitive control measures that are primarily 
driven by brain regions, is due to the fact that the brain is developing continuously during 
childhood, adolescence, and early adulthood. During adolescence and adulthood, there are 
significant changes in the mesencephalic dopaminergic system and availability of sites of 
dopamine release sites (Wahlstrom et al., 2010), which drives the changes observed in the ACC 
and ERN (Holroyd & Coles, 2002). Researchers have turned their attention to the description of 
the “typical” brain trajectory of cognitive control measures, which can inform researchers 
“where” to look for deviations from these trajectories and to test if this is indicative of 
psychopathology. This is mainly necessary since many mental disorders develop before 
adulthood (e.g., Olfson et al., 2023), making childhood and adolescence a vulnerable period. A 
few comprehensive developmental studies on childhood until early adulthood show age-
related increases in conflict and error-processing in healthy individuals (Boen et al., 2021; Lo, 
2018; Tamnes et al., 2013), yet such developmental or prospective studies with patients are 
lacking. The developmental perspective in clinical samples allows researchers to test the 
“changeability” which in turn can inform the progression of disorders. This is why a 
developmental perspective on performance monitoring in psychopathology is strongly 
encouraged. 

More empirical evidence is needed to see how the separate processes of performance 
monitoring interactively drive behavior (given the role of the ACC). Rather than studying the 
cognitive control processes in isolation, different cognitive control processes (e.g., inhibition 
and working memory; Naim et al., 2023) and other frameworks (threat/reward processing, 
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attentional biases) all simultaneously contribute to maladaptive behavior and symptoms (Diehl 
et al., 2018; Ridderinkhof et al., 2004). Research initiatives such as the Research Domain 
Criteria (RDoC, NIH, Cuthbert, 2022) encourage exploring mental health through a more 
complete matrix of heuristic topics and the evaluation of domains that contribute to a disorder. 
For example, a panel of experts agreed that response selection and inhibition constructs from 
the cognitive control domain contribute most to addiction (Yücel et al., 2018). Several studies 
conclude that cognitive control deficits are related to disorders (McTeague et al., 2016) such as 
depression (Dotson et al., 2020), addiction (Brooks et al., 2017), and anxiety (Weinberg et al., 
2015).  

The studies discussed in Chapter 3 serve as suggestions for clinical application of 
performance monitoring research in clinical settings. Future research can be devoted to 
validating treatment and interventions options that include brain stimulation and 
improvement in self-monitoring. Non-invasive (deep) brain stimulation (e.g., transcranial 
magnetic stimulation) shows promising results in modulating the performance monitoring 
network for some disorders (e.g., in patients with OCD: Balzus et al., 2022) but not in others 
(e.g., addiction: Verveer, 2020). The next step would be to investigate whether brain 
stimulation results in the reduction of symptom severity and improved behavior. Finally, a 
promising avenue includes meditation and mindfulness, which besides other benefits (Im et 
al., 2021), seem to improve executive functioning (e.g., Teper & Inzlicht, 2013). On a 
mechanistic level, the emotional acceptance and improved ability to self-monitor increase 
performance monitoring.   

Overall conclusion 

In conclusion, this dissertation highlights the role of performance monitoring in 
psychopathology. Findings indicate that performance monitoring deficits serve as markers for 
externalizing disorders, as supported by current research. The developmental sample 
presented here sheds light on the longitudinal trajectory of conflict monitoring in children and 
its association with adaptive behavior. Additionally, this dissertation offers initial evidence 
regarding the brain regions involved in social error processing. Through an integrative 
approach, this dissertation demonstrates how error and conflict processing are implicated in 
both healthy individuals and psychopathology, employing diverse methods and modalities. 
The results presented here also provide concrete recommendations for future performance 
monitoring research and its relevance for clinical practice. 
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code and data available on OSF. While working on her Ph.D., Miranda continues to teach 
swimming lessons to children at the local swimming pool in her spare time. Miranda will 
continue to work for DPECS as an Assistant Professor under the supervision of Prof. Matthias 
Wieser, PhD. She lives with her husband Lars and two daughters (Nora Maya, born 2018 and 
Isa Elyn, born 2021) in Oegstgeest. 
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PhD Portfolio 

Publications 

De Jong, K., Conijn, J. M., Gallagher, R. A.V., Reshetnikova, A. S., Heij, M. & Lutz, M. C. (2021). Using 
progress Feedback to improve outcomes and reduce dropout, treatment duration, and deterioration: A 
multilevel meta-analysis. Clinical Psychological Review, 85, 102002. 
https://doi.org/10.1016/j.cpr.2021.102002  

Lutz, M. C., Kok, R., & Franken, I. H. A. (2021). Event-related potential (ERP) measures of error 
processing as biomarkers of externalizing disorders: A narrative review. International Journal of 
Psychophysiology, 166, 151-159. https://doi.org/10.1016/j.ijpsycho.2021.06.002  

Lutz, M. C., Kok, R., Verveer, I., Malbec, M., Koot, S., van Lier, P., & Franken, I. H. A. (2021). A meta-
analytic review of error-related negativity and error positivity in adults and children with externalizing 
disorders or problems. Journal of Psychiatry & Neuroscience, 46(6), E615-E627. 
https://doi.org/10.1503/jpn.200031  

Submitted/Pre-registered papers 

Aslanidou, A., Malbec, M., Lutz, M.C., & Wieser, M. J.: Review on steady-state EEG: ability to 
differentiate between stimuli. Preregistration: https://osf.io/nq745/. 

Calga, C.*, Troost, L.*, Ultanir, D.*, Lutz, M.C., & Schulte, M. (2023). TMS. Submitted to Frontiers for 
Young Minds. *shared first authorship. 

Horoz, N., van Atteveldt, N., van Lenthe, F., Groeniger, J. O., Houweling, T. A., Koot, H. M., Lutz, M. C., 
& Buil, M. (2023, May 26). Are Household- and School-level Parental Education Associated with 
Academic Self-Concept Development in Elementary School? https://doi.org/10.17605/OSF.IO/5BTP4 

Lutz M. C., Buil, M., Kok, R., Koot, S., Franken, I. H. A., & Van Lier, P. A. C. Developmental trajectory of 
flanker performance and its link to problem behavior in 7-to 12-year-old children. Retrieved from: 
https://osf.io/10.31234/osf.io/fj62k  

Lutz, M. C., Davidsen, A. H., & de Jong, K. Validity study of the Dutch translation of the Assessment for 
Signal Clients questionnaire. Revied & Re-submitted in Clinical Psychology and Psychotherapy 

Lutz, M. C., Lakhlani, D., Tang, A., Smith, A. S., Kok, R., Franken, I. H. A., Guyer, A., Fox, N. A., Pine, D. 
S, & Harrewijn, A. Effects of Infancy Behavioral Inhibition on Social Processing and Risk for Social 
Anxiety during Adulthood. Pre-registration: https://osf.io/nwyc9   

Lutz, M.C., Rast, P., Baldwin, S. A., Franken, I. H. A., Larson, M. J., & Clayson, P. Testing the 
Correspondence Between Intraindividual Variability in Performance-Monitoring Behavior and Event-
Related Potentials. Pre-registration under embargo: https://osf.io/mzexu  

Presentations/talks 

• 23.04.21, Open Science Rotterdam. Publication bias and P-curve analysis for Meta-Analysis. 
https://tinyurl.com/4zuwtfya  

https://osf.io/nq745/
https://doi.org/10.17605/OSF.IO/5BTP4
https://osf.io/10.31234/osf.io/fj62k
https://osf.io/nwyc9
https://osf.io/mzexu
https://tinyurl.com/4zuwtfya
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• 13.06.22, CPDD Minneapolis, USA. Poster M36 entitled: Diminished Error-Related Negativity and 
Error Positivity in Adults With Addiction Problems and Disorders: A Meta-Analysis on Error 
Processing 

• 20.09.22, Rotterdam, the Netherlands. Master course (Addiction) lecture entitled: Behavioral 
addictions: are we in control of our behavior? 

• 28.09.22, SPR Vancouver, Canada. Poster session 1 entitled: Relationship between within-person 
differences in error-related negativity and error positivity and correct-trial response-time means and 
variances in healthy participants 

Courses 

• EGSH Communicating your research: Lessons from Bitescience 
• EGSH Data analysis with R 
• EGSH Professionalism and integrity in research 
• EGSH Searching, finding and managing your literature 
• EGSH Shut up and write 
• EGSH Multi-level modeling I 
• EGSH Multi-level modeling II 
• EGSH Making your research proposal work for you 
• EGSH Research Synthesis & Meta-analysis  
• EGSH Self-presentation: focus, structure 
• EARA Advanced Structural Equational Modeling 
• EPOS &Helmholtz workshop: Inhibition Winterschool 

Awards | Recognition 

2022 Travel grants: Van der Gaag beurs, KNAW; €4575 Erasmus Trust Fund, €2500; SPR Family 
Support grant: $400 

2021 Award for best Ph.D. Colleague 2020 from the Graduate School Awards for Ph.D. Excellence, 
Graduate School of Social Sciences and Humanities, EUR 

2020 Seed funding for Reducing externalizing behavior in adolescents using co-creation, in 
collaboration with Michelle Achterberg, Ph.D. & Lysanne te Brinke, Ph.D., €1500. 

Academic Activities 

Events   Organized and hosted: Graduate Research Days VNOP-CAS 2018-2020; PRO 2021 

Committee Founder of departmental PhD representatives, Erasmus University Rotterdam 

Peer-Review Neuroscience & Biobehavioral Reviews; European Addiction Research 

Teaching 

• Bachelor and Master thesis supervision 
• Coordination and teacher for three workgroups in the master Kind & Jeugd Psychologie 
• Teacher for third-year workgroups and advanced research trainee program in the bachelor 

Psychology 


